Occurrence of antibiotic residues in Apulian honey: potential risk of environmental pollution by antibiotics


Submitted: 14 November 2019
Accepted: 21 November 2019
Published: 1 April 2020
Abstract Views: 1278
PDF: 685
HTML: 19
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

The presence of antibiotic residues in honey is widely documented and is attributed almost exclusively to improper beekeeping practices, due to the frequent use of drugs for the treatment of beehive diseases. Therefore, the aim of our research was to evaluate the presence of antibiotics in honeycomb using the Anti-Microbial Array II (AM II) and IV (AM IV) method and to assess the relationship between environmental context and antibiotic residues in honey. The results show the presence of antibiotic residues in 26/50 honey from brood nests samples, confirming the impact of environmental contamination on the health quality of this food product. In addition, subsequent analyses conducted on positive samples reveal the instability over time of antimicrobial molecules in honey. These results highlight the need for further studies in order to understand all likely sources of contamination and to implement a comprehensive safety management plan for honey.


Adams SJ, Fusell RJ, Dickinson M, Wilkins S, Sharman M, 2009. Study of the depletion of lincomycin residues in honey extracted from treated honeybee (Apis mellifera L.) colonies and the effect of the shook swarm procedure. Anal. Chim. Acta 637:315–320. doi:10.1016/j.aca.2008.09.013. DOI: https://doi.org/10.1016/j.aca.2008.09.013

Alippi AM, Albo GN, Leniz D, Rivera I, Zanelli ML, Roca AE, 1999. Comparative study of tylosin, erythromycin and oxytetracycline to control American foulbrood of honey bees. J. Apic. Res. 38:149-158. doi: 10.1080/00218839.1999.11101005. DOI: https://doi.org/10.1080/00218839.1999.11101005

Ahmed MB, Rajapaksha AU, Lim JE, Vu NT, Kim IS, Kang HM, Lee SS, Ok YS, (2015). Distribution and accumulative pattern of tetracyclines and sulfonamides in edible vegetables of cucumber, tomato, and lettuce. J Agric Food Chem. 63: 398–405. doi:10.1021/jf5034637. DOI: https://doi.org/10.1021/jf5034637

Anon, 2002. Establishing the appropriate treatment method for oxytetracycline to minimise effects on brood and residues in honey. Final project report. Central Science Laboratory, York, United Kingdom.

Anon, 2006. Investigation of the fate of veterinary drugs used in apiculture. Research project final report. Central Science Laboratory, York, United Kingdom.

Baggio A, Gallina A, Benetti C, Mutinelli F, (2009). Residues of antibacterial drugs in honey from the Italian market. Food Addit. Contam. B 2:52-58 DOI: 10.1080/02652030902897721. DOI: https://doi.org/10.1080/02652030902897721

Bailac S, Barrón D, Barbosa J, 2006. New extraction procedure to improve the determination of quinolones in poultry muscle by liquid chromatography with ultraviolet and mass spectrometric detection. Anal Chim Acta. 580:163–169. DOI:10.1016/j.aca.2006.07.064. DOI: https://doi.org/10.1016/j.aca.2006.07.064

Barnes KK, Kolpin DW, Furlong ET, Zaugg SD, Meyer MT, Barber LB, (2008). A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States e I. Groundwater. Sci Total Envir. 402: 192-200. doi: 10.1016/j.scitotenv.2008.04.028 DOI: https://doi.org/10.1016/j.scitotenv.2008.04.028

Barrasso R, Bonerba E, Savarino AE, Ceci E., Bozzo G, Tantillo G, (2019). Simultaneous Quantitative Detection of Six Families of Antibiotics in Honey Using A Biochip Multi-Array Technology. Vet. Sci. 2019, 6, 1; doi:10.3390/vetsci6010001. DOI: https://doi.org/10.3390/vetsci6010001

Broekaert N, Vanpeteghem C, Daeseleire E, Sticker D, Vanpoucke C, (2011). Development and validation of an UPLC-MS/MS method for the determination of ionophoric and synthetic coccidiostats in vegetables. Anal Bioanal Chem 401 (10): 3335–3344. doi: 10.1007/s00216-011-5433-1 DOI: https://doi.org/10.1007/s00216-011-5433-1

Chiesa LM, Panseri S, Nobile M, Ceriani F, Arioli F, (2018). Distribution of POPs, pesticides and antibiotic residues in organic honeys from different production areas. Food Addit Contam A 35:1340-1355.doi: 10.1080/19440049.2018.1451660. DOI: https://doi.org/10.1080/19440049.2018.1451660

Chung HS, Lee YJ, Rahman MM, Abd El-Aty AM, Lee HS, Park BJ, Kim JE, Hacımüftüoğlu F., Nahar N., Shin H.C., Shim J.H. (2017). Uptake of the veterinary antibiotics chlortetracycline, enrofloxacin, and sulphathiazole from soil by radish. Sci Total Environ. 605–606: 322–331. doi: 10.1016/j.scitotenv.2017.06.231. DOI: https://doi.org/10.1016/j.scitotenv.2017.06.231

Commission regulation (EU) No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Off. J. EU 2009, L15, 72.

Evaggelopoulou EN, Samanidou VF, (2013). Development and validation of an HPLC method for the determination of six penicillin and three amphenicol antibiotics in gilthead seabream (Sparus Aurata) tissue according to the European Union Decision 2002/657/EC. Food Chem. 136:1322–1329. doi:10.1016/j.foodchem.2012.09.044. DOI: https://doi.org/10.1016/j.foodchem.2012.09.044

Fussell RJ, Dickinson M, Heinrich K, Wilkins S, Sharman M, 2010. A study on the distribution of veterinary drug residues in treated bee hives and implications for setting MRLs. In: Proceedings of the sixth international symposium on hormone and veterinary drug residue analysis, June 1–4, Gent, Belgium.

Italian Ministry of Health. Direzione Generale per L’igiene e la Sicurezza Degli Alimenti e la Nutrizione. Piano Nazionale Residui 2017. Available online: http://webcache.googleusercontent.com/search?q=cache:w4SXIP28YcYJ:repository.regione.veneto.it/public/ced34a0eddc56151da31f57ff969d50c.php%3Flang%3Dit%26dl%3Dtrue+&cd=1&hl=it&ct=clnk&gl=it (accessed on 12 March 2018).

Kochansky J, (2004). Degradation of tylosin residues in honey. J of Apicult Res 43: 65-68. DOI: 10.1080/00218839.2004.11101113. DOI: https://doi.org/10.1080/00218839.2004.11101113

Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. Environ. Sci. Technol. 36: 1202–1211. DOI:10.1021/es011055j. DOI: https://doi.org/10.1021/es011055j

Martel AC, Zeggane S, Drajnudel P, Faucon JP, Aubert M, 2006. Tetracycline residues in honey after hive treatment. Food Addit. Contam. A 23 (3), 265–273. Doi: ff10.1080/02652030500469048 DOI: https://doi.org/10.1080/02652030500469048

Pang GF, Zhang JJ, Cao YZ, Fan CL, Lin XM, Li ZY, Jia GQ, 2004. Evaluation of analyte stability and method ruggedness in the determination of streptomycin residues in honey by liquid chromatography with post-column derivatization. J. AOAC Int. 87 (1), 39–44. DOI: https://doi.org/10.1093/jaoac/87.1.39

Pariza RJ, (2006). From patent to prescription: paving the perilous path to profit. In M. S. Chorghade (Ed.), Drug discovery and development. Drug discovery (Vol. 1, pp. 1–16). Hoboken, NJ: John Wiley & Sons, Inc.

Popa ID, Schiriac EC, Cuciureanu R,(2012). Multi-analytic detection of antibiotic residues in honey using a multiplexing biochip assay. Rev. Med. Chir. Soc. Med. Nat. Iasi. 116:324-329.

Reybroeck W, (2014). Quality control of honey and bee products. In R.K. Gupta, W. Reybroeck, J.W. van Veen, & A. Gupta (Eds.), Beekeeping for poverty alleviation and livelihood security. Vol. 1: Technological aspects of beekeeping (pp. 481– 506). Dordrecht: Springer. doi:10.1007/978-94-017-9199-1. DOI: https://doi.org/10.1007/978-94-017-9199-1

Reybroeck W, Daeseleire E, De Brabander HF, Herman L, (2012). Antimicrobials in beekeeping. Vet Microbiol. 158: 1-11. doi: 10.1016/j.vetmic.2012.01.012. DOI: https://doi.org/10.1016/j.vetmic.2012.01.012

Reybroeck W, (2003). Residues of antibiotics and sulphonamides in honey on the Belgian market. Apiacta, 38, 23–30.

Saridaki-Papakonstadinou M, Andredakis S, Burriel A, Tsachev I, (2006). Determination of tetracycline residues in Greek honey. Trakia Journal of Sciences, 4, 33–36.

Thompson TS, van den Heever JP, (2012). Degradation of erythromycin in honey and selection of suitable marker residues for food safety analysis. Food Chem 133:1510–1520. doi:10.1016/j.foodchem.2012.02.041. DOI: https://doi.org/10.1016/j.foodchem.2012.02.041

Thompson TS, Pernal SF, Noot DK, Melathopoulos AP, van den Heever JP, (2007). Degradation of incurred tylosin to desmycosin-Implications for residue analysis of honey. Anal Chim Acta 586:304–311. doi:10.1016/j.aca.2006.09.043. DOI: https://doi.org/10.1016/j.aca.2006.09.043

Volmer DA, Hui JPM, (1998). Study of erythromycin A decomposition products in aqueous solution by solid-phase microextraction/liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 12, 123–129. DOI:10.1002/(SICI)1097-0231(19980214)12:3<123::AID-RCM126>3.0.CO;2-4 DOI: https://doi.org/10.1002/(SICI)1097-0231(19980214)12:3<123::AID-RCM126>3.0.CO;2-4

Wegener HC, Aarestrup FM, Gerner-Smidt P, Bager F, 1999. Transfer of antibiotic resistant bacteria from animals to man. Acta Vet. Scand. 92, 51–57.

Supporting Agencies

- Research and Experimentation Project in Agriculture “Ape e Ambiente: Biomonitoraggio e Valorizzazione dei Prodotti dell’alveare Pugliesi” (AP.A.Bi.Va.P.P.) (Cod PSR_115)

1.
Savarino AE, Terio V, Barrasso R, Ceci E, Panseri S, Chiesa LM, Bonerba E. Occurrence of antibiotic residues in Apulian honey: potential risk of environmental pollution by antibiotics. Ital J Food Safety [Internet]. 2020 Apr. 1 [cited 2024 Mar. 29];9(1). Available from: https://www.pagepressjournals.org/ijfs/article/view/8678

Downloads

Download data is not yet available.

Citations