Effect of production process and high-pressure processing on viability of Listeria innocua in traditional Italian dry-cured coppa

Submitted: 25 May 2020
Accepted: 24 June 2020
Published: 19 August 2020
Abstract Views: 1037
PDF: 538
HTML: 21
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.


In this study the effect of the application of High Pressure Treatment (HPP) combined with four different manufacturing processes on the inactivation of Listeria innocua, used as a surrogate for L. monocytogenes, in artificially contaminated coppa samples was evaluated in order to verify the most suitable strategy to meet the Listeria inactivation requirements needed for the exportation of dry-cured meat in the U.S. Fresh anatomical cuts intended for coppa production were supplied by four different delicatessen factories located in Northern Italy. Raw meat underwent experimental contamination with Listeria innocua using a mixture of 5 strains. Surface contamination of the fresh anatomical cuts was carried out by immersion into inoculum containing Listeria spp. The conditions of the HPP treatment were: pressure 593 MPa, time 290 seconds, water treatment temperature 14°C. Listeria innocua was enumerated on surface and deep samples post contamination, resting, ripening and HPP treatment. The results of this study show how the reduction of the microbial load on coppa during the production process did not vary among three companies (P>0.05) ranging from 3.73 to 4.30 log CFU/g, while it was significantly different (P<0.01) for the fourth company (0.92 log CFU/g). HPP treatment resulted in a significant (P<0.01) deep decrease of L.innocua count with values ranging between 1.63-3.54 log CFU/g with no significant differences between companies. Regarding superficial contamination, HPP treatment resulted significant (P<0.01) only in Coppa produced by two companies. The results highlight that there were processes less effective to inhibit the pathogen; in particular for company D an increase of L. innocua count was shown during processing and HPP alone cannot be able to in reaching the Listeria inactivation requirements needed for exportation of dry-cured meat in the U.S. According to the data reported in this paper, HPP treatment increases the ability of the manufacturing process of coppa in reducing Listeria count with the objective of a lethality treatment



PlumX Metrics


Download data is not yet available.


Barbuti S, Grisenti M, Frustoli M, Parolari G, 2009. Validation of the manufacturing process of Italian dry-cured ham (prosciutto) for the inactivation of Listeria monocytogenes and Salmonella spp. In: Int Congr Meat Sci Technol. [place unknown]; p. PE6.10.
Black EP, Huppertz T, Fitzgerald GF, Kelly AL, 2007a. Baroprotection of vegetative bacteria by milk constituents: A study of Listeria innocua. Int Dairy J. 17:104–110. doi: 10.1016/j.idairyj.2006.01.009 DOI: https://doi.org/10.1016/j.idairyj.2006.01.009
Black EP, Setlow P, Hocking AD, Stewart CM, Kelly AL, Hoover DG, 2007b. Response of spores to high-pressure processing. Compr Rev Food Sci Food Saf. 6:103–119. doi: 10.1111/j.1541-4337.2007.00021.x DOI: https://doi.org/10.1111/j.1541-4337.2007.00021.x
Bonilauri, P., Liuzzo, G., Merialdi, G., Bentley, S., Poeta, A., Granelli, F., & Dottori, M. (2004). Growth of Listeria monocytogenes on vacuum-packaged horsemeat for human consumption. Meat science, 68(4), 671-674 DOI: https://doi.org/10.1016/j.meatsci.2004.05.014
Bover-Cid S, Belletti N, Aymerich T, Garriga M, 2015. Modeling the protective effect of a w and fat content on the high pressure resistance of Listeria monocytogenes in dry-cured ham. Food Res Int. 75:194–199. doi: 10.1016/j.foodres.2015.05.052 DOI: https://doi.org/10.1016/j.foodres.2015.05.052
Bover-Cid S, Belletti N, Garriga M, Aymerich T, 2011. Model for Listeria monocytogenes inactivation on dry-cured ham by high hydrostatic pressure processing. Food Microbiol. 28:804–809. doi: 10.1016/j.fm.2010.05.005 DOI: https://doi.org/10.1016/j.fm.2010.05.005
Busconi M, Zacconi C, Scolari G, 2014. Bacterial ecology of PDO Coppa and Pancetta Piacentina at the end of ripening and after MAP storage of sliced product. Int J Food Microbiol. 172:13–20. doi: 10.1016/j.ijfoodmicro.2013.11.023 DOI: https://doi.org/10.1016/j.ijfoodmicro.2013.11.023
EFSA (European Food Safety Authority) 2010. Management of left-censored data in dietary exposure assessment of chemical substances EFSA Journal; 8(3):1557 DOI: https://doi.org/10.2903/j.efsa.2010.1557
EFSA and ECDC (European Food Safety Authority and European Centre for Disease Prevention and Control), 2019. The European Union One Health 2018 Zoonoses Report. EFSA J. 17:5926, 276 pp. doi: 10.2903/j.efsa.2019.5926 DOI: https://doi.org/10.2903/j.efsa.2019.5926
European Commission, 2005. Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Off J Eur Union.:1–26.
Food Safety and Inspection Service/ United States Department of Agricultural (USDA/FSIS), 2017. FSIS Salmonella Compliance Guidelines for Small and Very Small Meat and Poultry Establishments that Produce Ready-to-Eat (RTE) Products and Revised Appendix A.
Food Safety Inspection Service (FSIS), 2015. Control of Listeria monocytogenes in ready-to-eat meat and poultry products. Fed Regist. 80:35178–35188.
Garriga M, Grèbol N, Aymerich MT, Monfort JM, Hugas M, 2004. Microbial inactivation after high-pressure processing at 600 MPa in commercial meat products over its shelf life. Innov Food Sci Emerg Technol. 5:451–457. doi: 10.1016/j.ifset.2004.07.001 DOI: https://doi.org/10.1016/j.ifset.2004.07.001
Garriga M, Marcos B, Martín B, Veciana-Nogués MT, Bover-Cid S, Hugas M, Aymerich T, 2005. Starter cultures and high-pressure processing to improve the hygiene and safety of slightly fermented sausages. J Food Prot. 68:2341–2348. doi: 10.4315/0362-028X-68.11.2341 DOI: https://doi.org/10.4315/0362-028X-68.11.2341
Gonzales-Barron U, Cadavez V, Pereira AP, Gomes A, Araújo JP, Saavedra MJ, Estevinho L, Butler F, Pires P, Dias T, 2015. Relating physicochemical and microbiological safety indicators during processing of linguiça , a Portuguese traditional dry-fermented sausage. Food Res Int. 78:50–61. doi: 10.1016/j.foodres.2015.11.007 DOI: https://doi.org/10.1016/j.foodres.2015.11.007
Gray JA, Chandry PS, Kaur M, Kocharunchitt C, Bowman JP, Fox EM, 2018. Novel biocontrol methods for Listeria monocytogenes biofilms in food production facilities. Front Microbiol. 9:605. doi: 10.3389/fmicb.2018.00605 DOI: https://doi.org/10.3389/fmicb.2018.00605
Hayman MM, Kouassi GK, Anantheswaran RC, Floros JD, Knabel SJ, 2008. Effect of water activity on inactivation of Listeria monocytogenes and lactate dehydrogenase during high pressure processing. Int J Food Microbiol. 124:21–26. doi: 10.1016/j.ijfoodmicro.2008.02.026 DOI: https://doi.org/10.1016/j.ijfoodmicro.2008.02.026
Van Hekken DL, Tunick MH, Farkye NY, Tomasula PM, 2013. Effect of hydrostatic high-pressure processing on the chemical, functional, and rheological properties of starter-free Queso Fresco1. J Dairy Sci. 96:6147–6160. doi: 10.3168/jds.2012-6212 DOI: https://doi.org/10.3168/jds.2012-6212
Hereu A, Bover-Cid S, Garriga M, Aymerich T, 2012. High hydrostatic pressure and biopreservation of dry-cured ham to meet the Food Safety Objectives for Listeria monocytogenes. Int J Food Microbiol. 154:107–112. doi: 10.1016/j.ijfoodmicro.2011.02.027 DOI: https://doi.org/10.1016/j.ijfoodmicro.2011.02.027
Hoz L, Cambero MI, Cabeza MC, Herrero AM, Ordo´n˜ez JA, Ordo´n O, Ordo´n˜ez O, 2008. Elimination of Listeria monocytogenes from Vacuum-Packed Dry-Cured Ham by E-Beam Radiation. doi: 10.4315/0362-028X-71.10.2001 DOI: https://doi.org/10.4315/0362-028X-71.10.2001
Hu M, Gurtler JB, 2017. Selection of surrogate bacteria for use in food safety challenge studies: A review. J Food Prot. 80:1506–1536. doi: 10.4315/0362-028X.JFP-16-536 DOI: https://doi.org/10.4315/0362-028X.JFP-16-536
Hugas M, Garriga M, Monfort JM, 2002. New mild technologies in meat processing: High pressure as a model technology. Meat Sci. 62:359–371. doi: 10.1016/S0309-1740(02)00122-5 DOI: https://doi.org/10.1016/S0309-1740(02)00122-5
ISO, 2004. Microbiology of food and animal feeding stuffs — Horizontal method for the detection and enumeration of Listeria monocytogenes — Part 1: Detection method AMENDMENT 1: Modification of the isolation media and the haemolysis test, and inclusion of precisiondata. ISO 11290-1:1996/AMD 1:2004. International Standardization Organization ed., Geneva, Switzerland.
ISO, 2004. Microbiology of food and animal feeding stuffs. Determination of water activity ISO 21807:2004. International Standardization Organization ed., Geneva, Switzerland.
Jordan K, McAuliffe O, 2018. Listeria monocytogenes in Foods. In: Adv Food Nutr Res. Vol. 86. Academic Press Inc.; p. 181–213. doi: 10.1016/bs.afnr.2018.02.006 DOI: https://doi.org/10.1016/bs.afnr.2018.02.006
Meloni D, Galluzzo P, Mureddu A, Piras F, Griffiths M, Mazzette R, 2009. Listeria monocytogenes in RTE foods marketed in Italy: Prevalence and automated EcoRI ribotyping of the isolates. Int J Food Microbiol. 129:166–173. doi: 10.1016/j.ijfoodmicro.2008.11.014 DOI: https://doi.org/10.1016/j.ijfoodmicro.2008.11.014
Merialdi G, Ramini M, Ravanetti E, Gherri G, Bonilauri P, 2015. Reduction of listeria innocua contamination in vacuum-pack-aged dry-cured italian pork products after high hydrostatic pressure treatment. Ital J Food Saf. 4:101–103. doi: 10.4081/ijfs.2015.4515 DOI: https://doi.org/10.4081/ijfs.2015.4515
Montiel R, Peirotén Á, Ortiz S, Bravo D, Gaya P, Martínez-Suárez J V., Tapiador J, Nuñez M, Medina M, 2020. Inactivation of Listeria monocytogenes during dry-cured ham processing. Int J Food Microbiol. 318:108469. doi: 10.1016/j.ijfoodmicro.2019.108469 DOI: https://doi.org/10.1016/j.ijfoodmicro.2019.108469
Morales-Partera ÁM, Cardoso-Toset F, Jurado-Martos F, Astorga RJ, Huerta B, Luque I, Tarradas C, Gómez-Laguna J, 2017. Survival of selected foodborne pathogens on dry-cured pork loins. doi: 10.1016/j.ijfoodmicro.2017.07.016 DOI: https://doi.org/10.1016/j.ijfoodmicro.2017.07.016
Morales P, Calzada J, Nuñez M, 2006. Effect of high-pressure treatment on the survival of Listeria monocytogenes Scott A in sliced vacuum-packaged Iberian and Serrano cured hams. J Food Prot. 69:2539–2543. doi: 10.4315/0362-028X-69.10.2539 DOI: https://doi.org/10.4315/0362-028X-69.10.2539
Nightingale KK, Thippareddi H, Phebus RK, Marsden JL, Nutsch AL, 2006. Validation of a traditional Italian-style salami manufacturing process for control of Salmonella and Listeria monocytogenes. J Food Prot. 69:794–800. doi: 10.4315/0362-028X-69.4.794 DOI: https://doi.org/10.4315/0362-028X-69.4.794
Patterson MF, 2005. Microbiology of pressure-treated foods. In: J Appl Microbiol. Vol. 98. [place unknown]: J Appl Microbiol; p. 1400–1409. doi: 10.1111/j.1365-2672.2005.02564.x DOI: https://doi.org/10.1111/j.1365-2672.2005.02564.x
Porto-Fett ACS, Call JE, Shoyer BE, Hill DE, Pshebniski C, Cocoma GJ, Luchansky JB, 2010. Evaluation of fermentation, drying, and/or high pressure processing on viability of Listeria monocytogenes, Escherichia coli O157:H7, Salmonella spp., and Trichinella spiralis in raw pork and Genoa salami. Int J Food Microbiol. 140:61–75. doi: 10.1016/j.ijfoodmicro.2010.02.008 DOI: https://doi.org/10.1016/j.ijfoodmicro.2010.02.008
Possas A, Pérez-Rodríguez F, Valero A, García-Gimeno RM, 2017. Modelling the inactivation of Listeria monocytogenes by high hydrostatic pressure processing in foods: A review. Trends Food Sci Technol. 70:45–55. doi: 10.1016/j.tifs.2017.10.006 DOI: https://doi.org/10.1016/j.tifs.2017.10.006
Rastogi NK, Raghavarao KSMS, Balasubramaniam VM, Niranjan K, Knorr D, 2007. Opportunities and Challenges in High Pressure Processing of Foods. Crit Rev Food Sci Nutr. 47:69–112. doi: 10.1080/10408390600626420 DOI: https://doi.org/10.1080/10408390600626420
Reynolds AE, Harrison MA, Rose-Morrow R, Lyon CE, 2001. Validation of Dry-cured Ham Process for Control of Pathogens. J Food Sci. 66:1373–1379. doi: 10.1111/j.1365-2621.2001.tb15217.x DOI: https://doi.org/10.1111/j.1365-2621.2001.tb15217.x
Rubio B, Possas A, Rincón F, García-Gímeno RM, Martínez B, 2018. Model for Listeria monocytogenes inactivation by high hydrostatic pressure processing in Spanish chorizo sausage. Food Microbiol. 69:18–24. doi: 10.1016/j.fm.2017.07.012 DOI: https://doi.org/10.1016/j.fm.2017.07.012
Sandra S, Stanford MA, Goddik LM, 2004. The Use of High-pressure Processing in the Production of Queso Fresco Cheese. J Food Sci. 69:FEP153–FEP158. doi: 10.1111/j.1365-2621.2004.tb06340.x DOI: https://doi.org/10.1111/j.1365-2621.2004.tb06340.x
Tack DM, Marder EP, Griffin PM, Cieslak PR, Dunn J, Hurd S, Scallan E, Lathrop S, Muse A, Ryan P, et al., 2019. Preliminary incidence and trends of infections with pathogens transmitted commonly through food — foodborne diseases active surveillance network, 10 U.S. sites, 2015-2018. Morb Mortal Wkly Rep. 68:369–373. doi: 10.15585/mmwr.mm6816a2 DOI: https://doi.org/10.15585/mmwr.mm6816a2
Tao Y, Hogan E, Kelly AL, 2014. Chapter 1 – High-Pressure Processing of Foods: An Overview. In: Emerg Technol Food Process. Elsevier; p. 3–24. doi: 10.1016/B978-0-12-411479-1.00001-2 DOI: https://doi.org/10.1016/B978-0-12-411479-1.00001-2
Zanardi E, Novelli E, Ghiretti GP, Chizzolini R, 2000. Oxidative stability of lipids and cholesterol in salame Milano, coppa and Parma ham: Dietary supplementation with vitamin E and oleic acid. Meat Sci. 55:169–175. doi: 10.1016/S0309-1740(99)00140-0 DOI: https://doi.org/10.1016/S0309-1740(99)00140-0
Zhang H, Mittal GS, 2008. Effects of High-pressure Processing (HPP) on bacterial spores: An overview. Food Rev Int. 24:330–351. doi: 10.1080/87559120802089290 DOI: https://doi.org/10.1080/87559120802089290

How to Cite

Taddei R, Giacometti F, Bardasi L, Bonilauri P, Ramini M, Fontana MC, Bassi P, Castagnini S, Ceredi F, Pelliconi MF, Serraino A, Tomasello F, Piva S, Mondo E, Merialdi G. Effect of production process and high-pressure processing on viability of <em>Listeria innocua</em> in traditional Italian dry-cured coppa. Ital J Food Safety [Internet]. 2020 Aug. 19 [cited 2024 Jul. 13];9(2). Available from: https://www.pagepressjournals.org/ijfs/article/view/9133