Building a local reference library for metabarcoding survey of lake macrobenthos: oligochaetes and chironomids from Lake Maggiore


Submitted: 2 December 2022
Accepted: 30 January 2023
Published: 27 December 2022
Abstract Views: 729
PDF: 0
PDF: 0
PDF: 125
DOC: 0
DOC: 0
HTML: 8
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

This study represents a first reference database of genetic diversity of macroinvertebrates for a barcoding marker for Lake Maggiore, focusing on the two dominant groups of the littoral benthic fauna (chironomids and oligochaetes), commonly used for biological monitoring of freshwater lakes. Sediment samples were sorted at the stereomicroscope and single animals were cut in two pieces, one piece to be used for morphological identification and one piece for DNA extraction. This study allowed us to collect and identify 427 organisms: 309 oligochaetes belonging to 27 identifiable taxa and 118 chironomid larvae belonging to 26 identifiable taxa. Four families of oligochaetes: Naididae, Lumbricidae, Lumbriculidae, and Enchytraeidae and five subfamilies of Chironomidae: Chironominae, Tanypodinae, Orthocladiinae, Diamesinae, and Prodiamesinae were found. The extraction and amplification of the DNA covered a total of 10 oligochaete taxa. For 7 of them (Ophidonais serpentina, Uncinais uncinata, Vejdovskyella intermedia, Psammoryctides barbatus, Limnodrilus hoffmeisteri, Tubifex tubifex, and Bothrioneurum vejdovskyanum), we found other sequences in GenBank to compare genetic similarities with available data. For the other taxa (Lumbriculidae, and Enchytraeidae, and Nais sp.) no best hits were found in GenBank. The extraction and amplification of the DNA covered a total of 21 chironomid taxa. For ten species (Cladotanytarsus mancus, Cladotanytarsus atridorsum, Polypedilum scalaenum, Polypedilum nubeculosum, Benthalia carbonaria, Phaenopsectra flavipes, Clinotanypus nervosus, Paracladopelma laminatum, Cryptochironomus rostratus and Parakiefferiella finnmarkica) sequences were available in GenBank to compare genetic similarities. For the other taxa (Cryptochironomus sp., Demicryptochironomus vulneratus, Chironomus sp., Stictochironomus sp., Orthocladius sp., Cricotopus sp., Eukiefferiella sp., Procladius sp., Diamesa sp., Potthastia sp., and Monodiamesa bathyphila) no best hits were found in GenBank. For chironomids, DNA taxonomy revealed the existence of several species complexes. Covering more populations and more genetic markers for those taxa within a rationale of integrative taxonomy could solve the taxonomic problems and provide a reliable description of diversity.


Andersen T, Cranston PS, Epler JH (Eds.), 2013. Chironomidae of the Holarctic Region: Keys and diagnoses. Part 1 - Larvae. Entomological Society of Lund, Sweden. 573 pp.

Arfè A, Quatto P, Zambon A, MacIsaac HJ, Manca M, 2019. Long-Term Changes in the Zooplankton Community of Lake Maggiore in Response to Multiple Stressors: A Functional Principal Components Analysis. Water. 11:962. DOI: https://doi.org/10.3390/w11050962

Baird DJ, Hajibabaei M, 2012. Biomonitoring 2.0: a new paradigm in ecosystem assessment made possible by next‐generation DNA sequencing. Mol. Ecol. 21:2039-44. DOI: https://doi.org/10.1111/j.1365-294X.2012.05519.x

Beentjes K, Speksnijder A, Schilthuizen M, Hoogeveen M, Pastoor R, van der Hoorn BB, 2019. Increased performance of DNA metabarcoding of macroinvertebrates by taxonomic sorting. PLoS ONE. 14:e0226527. DOI: https://doi.org/10.1371/journal.pone.0226527

Boggero A, Zaupa S, Bettinetti R, Ciampittiello M, Fontaneto D, 2020. The Benthic Quality Index to Assess Water Quality of Lakes may be Affected by Confounding Environmental Feature. Water. 12:2519. DOI: https://doi.org/10.3390/w12092519

Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, et al., 2012. Biodiversity loss and its impact on humanity. Nature. 486:59-67. DOI: https://doi.org/10.1038/nature11148

Chavan V, Penev L, 2011. The data paper: a mechanism to incentivize data publishing in biodiversity science. BMC Bioinform. 12:1-12. DOI: https://doi.org/10.1186/1471-2105-12-S15-S2

Costello MJ, Michener WK, Gahegan M, Zhang ZQ, Bourne PE, 2013. Biodiversity data should be published, cited, and peer reviewed. Trends Ecol. Evol. 28:454-61. DOI: https://doi.org/10.1016/j.tree.2013.05.002

de Bernardi R, Giussani G, Manca M, Ruggiu D, 1988. Long-term dynamics of plankton communities in Lago Maggiore (N. Italy). Verh. Internat. Verein Limnol. 23:729-33. DOI: https://doi.org/10.1080/03680770.1987.11899700

Díaz S, Fargione J, Chapin III FS, Tilman D, 2006. Biodiversity loss threatens human well-being. PLoS Biol. 4:e277. DOI: https://doi.org/10.1371/journal.pbio.0040277

Erséus C, Gustafsson D, 2009. Cryptic speciation in clitellate model organisms. In: Annelids in Modern Biology, p.31-46. Shain DH, (Ed.). John Wiley & Sons, Inc.: Hoboken, NJ, USA. DOI: https://doi.org/10.1002/9780470455203.ch3

Ficetola G, Boyer F, Valentini A, Bonin A, Meyer A, Dejean T, et al., 2021. Comparison of markers for the monitoring of freshwater benthic biodiversity through DNA metabarcoding. Mol. Ecol. 30:3189–202. DOI: https://doi.org/10.1111/mec.15632

Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R, 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3:294-9.

Gadawski P, Montagna M, Rossaro B, Giłka W, Pešić V, Grabowski M, et al., 2022. DNA barcoding of chironomidae from the Lake Skadar region: reference library and a comparative analysis of the European fauna. Divers Distrib. 28:2838-57. DOI: https://doi.org/10.1111/ddi.13504

Guindon S, Dufayard J, Lefort V, Anisimova M, Hordijk W, Gascuel O, 2010. New algorithms and methods to estimate Maximum-Likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59:307-21. DOI: https://doi.org/10.1093/sysbio/syq010

Hebert PD, Cywinska A, Ball SL, DeWaard JR, 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biol. Sci. 270:313-21. DOI: https://doi.org/10.1098/rspb.2002.2218

Hooper DU, Adair EC, Cardinale BJ, Byrnes JE, Hungate BA, Matulich KL, et al., 2012. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105-8. DOI: https://doi.org/10.1038/nature11118

Jaureguiberry P, Titeux N, Wiemers M, Bowler DE, Coscieme L, Golden A, et al., 2022. The direct drivers of recent global anthropogenic biodiversity loss. Sci. Adv. 8:eabm9982. DOI: https://doi.org/10.1126/sciadv.abm9982

Joly S, Davies TJ, Archambault A, Bruneau A, Derry A, Kembel SW, et al., 2014. Ecology in the age of DNA barcoding: the resource, the promise and the challenges ahead. Mol. Ecol. Resour. 14:221-32. DOI: https://doi.org/10.1111/1755-0998.12173

Katoh K, Standley DM, 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30:772-80. DOI: https://doi.org/10.1093/molbev/mst010

Kornijów R, Pawlikowski K, Błędzki LA, Drgas A, Piwosz K, Ameryk A, Całkiewicz J, 2021. Co-occurrence and potential resource partitioning between oligochaetes and chironomid larvae in a sediment depth gradient. Aquat. Sci. 83:51. DOI: https://doi.org/10.1007/s00027-021-00800-z

Loh J, Green RE, Ricketts T, Lamoreux J, Jenkins M, Kapos V, Randers J, 2005. The Living Planet Index: using species population time series to track trends in biodiversity. Philosophical Transactions of the Royal Society B: Biol. Sci. 360:289-95. DOI: https://doi.org/10.1098/rstb.2004.1584

Magoga G, Fontaneto D, Montagna M, 2021. Factors affecting the efficiency of molecular species delimitation in a species-rich insect family. Mol. Ecol. Resour. 21:1475–89. DOI: https://doi.org/10.1111/1755-0998.13352

Magoga G, Forni G, Brunetti M, Meral A, Spada A, De Biase A, Montagna M, 2022. Curation of a reference database of COI sequences for insect identification through DNAmetabarcoding: COins. Database 2022:baac055. DOI: https://doi.org/10.1093/database/baac055

Marotta R, Crottini A, Raimondi E, Fondello C, Ferraguti M, 2014. Alike but different: the evolution of the Tubifex tubifex species complex (Annelida, Clitellata) through polyploidization. BMC Evol. Biol. 14:1-14. DOI: https://doi.org/10.1186/1471-2148-14-73

Mendenhall CD, Daily GC, Ehrlich PR, 2012. Improving estimates of biodiversity loss. Biol. Conserv. 151:32-34. DOI: https://doi.org/10.1016/j.biocon.2012.01.069

Padial JM, Miralles A, De la Riva I, Vences M, 2010. The integrative future of taxonomy. Front. Zool. 7:16. DOI: https://doi.org/10.1186/1742-9994-7-16

Paradis E, Schliep K, 2019. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35:526-8. DOI: https://doi.org/10.1093/bioinformatics/bty633

Purvis A, Hector A, 2000. Getting the measure of biodiversity. Nature 405:212-9. DOI: https://doi.org/10.1038/35012221

R Core Team, 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from: https://www.R-project.org/

Sigovini M, Keppel E, Tagliapietra D, 2016. Open nomenclature in the biodiversity era. Methods Ecol. and Evol. 7:1217-1225. doi: 10.1111/2041-210X.12594 DOI: https://doi.org/10.1111/2041-210X.12594

Tarmo T, 2009. A guide to the freshwater Oligochaeta and Polychaeta of Northern and Central Europe. Lauterbornia. 66:235.

Weigand H, Beermann AJ, Čiampor F, Costa FO, Csabai Z, Duarte S, et al., 2019. DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap-analysis and recommendations for future work. Sci Total Environ. 678:499-524. DOI: https://doi.org/10.1016/j.scitotenv.2019.04.247

Zaupa, S., Fontaneto, D., Sabatino, R., & Boggero, A. (2022). Building a local reference library for metabarcoding survey of lake macrobenthos: oligochaetes and chironomids from Lake Maggiore. Advances in Oceanography and Limnology, 13(2). https://doi.org/10.4081/aiol.2022.11051

Downloads

Download data is not yet available.

Citations