Rossby waves impact on persistent oxic and suboxic chlorophyll maxima in the Eastern Tropical North Pacific

Submitted: 9 March 2023
Accepted: 3 June 2024
Published: 19 September 2024
Abstract Views: 74
PDF: 60
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

This study aims to describe the response of two persistent chlorophyll-a maxima to physical processes that affect the po- sition of the thermocline/nitracline in the Eastern Tropical North Pacific (ETNP). We focused on Long Rossby Waves (LRWs) due to their relevance to the ETNP circulation and their potential role in introducing nutrients into the euphotic zone. We found that the shallower chlorophyll-a maximum in oxygenated waters became more intense when denser waters (containing more nu- trients) moved toward the surface. This suggests that changes in isopycnals and nitracline displacements modify nutrient supply in the euphotic zone, leading to changes in phytoplankton growth. The suboxic and deeper chlorophyll-a maximum showed a strong association with the 26 kg m-3 isopycnal, which was only mechanically displaced, and its chlorophyll-a content did not seem to covary with irradiance or nutrients. The decor- related responses of the chlorophyll-a maxima could be ex- plained if different phytoplankton groups are associated with them. LRWs can affect the position of the thermocline/nitracline and isopycnals in an annual cycle, but it seems to be a “back- ground” signal modulated by higher frequency processes such as mesoscale eddies and other Rossby waves. The co-occurrence of processes can control the nitracline depth, and thus the input of nutrients into the euphotic zone, leading to sporadic enhance- ments in chlorophyll-a concentration in one maximum.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Aleynik D, Inall ME, Dale A, Vink A, 2017. Impact of remotely generated eddies on plume dispersion at abyssal mining sites in the Pacific. Sci. Rep. 7:1-14. DOI: https://doi.org/10.1038/s41598-017-16912-2
Antoine D, André J-M, Morel A, 1996. Oceanic primary production 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll. Global Biogeochem. Cycles 10:57-69. DOI: https://doi.org/10.1029/95GB02832
Arteaga LA, Boss E, Behrenfeld MJ et al., 2020. Seasonal modulation of phytoplankton biomass in the Southern Ocean. Nat Commun. 11:5364. DOI: https://doi.org/10.1038/s41467-020-19157-2
Barbieux M, Uitz J, Bricaud A et al., 2018. Assessing the variability in the relationship between the particulate backscattering coefficient and the chlorophyll-a concentration from a global biogeochemical-Argo database. J. Geophys. Res. Ocean. 123:1229-50. DOI: https://doi.org/10.1002/2017JC013030
Barron CN, Kara AB, Jacobs GA, 2009. Objective estimates of westward Rossby wave and eddy propagation from sea surface height analyses. J. Geophys. Res. Ocean. 114:1-18. DOI: https://doi.org/10.1029/2008JC005044
Behrenfeld MJ, Boss ES, 2014. Resurrecting the ecological underpinnings of ocean plankton blooms. Ann. Rev. Mar. Sci. 6:167-94. DOI: https://doi.org/10.1146/annurev-marine-052913-021325
Belonenko TV, Bashmachnikov IL, Kubryakov AA, 2018. Horizontal advection of temperature and salinity by Rossby waves in the North Pacific. Int. J. Remote Sens. 39:2177-88. DOI: https://doi.org/10.1080/01431161.2017.1420932
Bernades H, Suryoputro AAD, Wirasatriya A et al., 2021. The effect of Ekman mass transport and Ekman pumping velocity on the variability of sea surface temperature in the Arafura Sea. IOP Conference Series: Earth and Environmental Science. 919:012026. DOI: https://doi.org/10.1088/1755-1315/919/1/012026
Bittig H, Wong A, Plant J, CORIOLIS-ADMT, 2018. BGC-Argo synthetic profile file processing and format on Coriolis GDAC. Available from: https://archimer.ifremer.fr/doc/00445/55637/
Boss E, Häentjens N, 2016. Primer regarding measurements of chlorophyll fluorescence and the backscattering coefficient with WETLabs FLBB on profiling floats. Available from: https://soccom.princeton.edu/sites/g/files/toruqf5341/files/documents/SOCCOM_2016-1_Bio-optics-primer.pdf
Boss E, Pegau WS, 2001. Relationship of light scattering at an angle in the backward direction to the backscattering coefficient. Appl. Opt. 40:5503. DOI: https://doi.org/10.1364/AO.40.005503
Boss E, Stramski D, Bergmann T et al., 2015. Why should we measure the optical backscattering coefficient? Oceanography 17:44-9. DOI: https://doi.org/10.5670/oceanog.2004.46
Briggs N, Perry MJ, Cetinić I et al., 2011. High-resolution observations of aggregate flux during a sub-polar North Atlantic spring bloom. Deep. Res. Part I Oceanogr. Res. Pap. 58:1031-9. DOI: https://doi.org/10.1016/j.dsr.2011.07.007
Capotondi A, Alexander MA, Deser C, 2003. Why are there Rossby wave maxima in the Pacific at 10 degrees S and 13 degrees N? J. Phys. Oceanogr. 33:1549-63. DOI: https://doi.org/10.1175/2407.1
Chelton DB, Schlax MG, 1996. Global observations of oceanic Rossby waves. Science. 272:234-8. DOI: https://doi.org/10.1126/science.272.5259.234
Chelton DB, Schlax MG, Samelson RM, de Szoeke RA, 2007. Global observations of large oceanic eddies. Geophys. Res. Lett. 34:1-5. DOI: https://doi.org/10.1029/2007GL030812
Cullen JJ, 2015. Subsurface chlorophyll maximum layers: enduring enigma or mystery solved? Ann. Rev. Mar. Sci. 7:207-39. DOI: https://doi.org/10.1146/annurev-marine-010213-135111
Fiedler PC, Talley LD, 2006. Hydrography of the eastern tropical Pacific: a review. Prog. Oceanogr. 69:143-80. DOI: https://doi.org/10.1016/j.pocean.2006.03.008
Gabriel KR, 1971. The biplot graphic display of matrices with application to principal component analysis. Biometrika 58:453-67. DOI: https://doi.org/10.1093/biomet/58.3.453
Garcia-Robledo E, Padilla CC, Aldunate M et al., 2017. Cryptic oxygen cycling in anoxic marine zones. Proc. Natl. Acad. Sci. 114:8319-24. DOI: https://doi.org/10.1073/pnas.1619844114
Glatt I, Dörnbrac, A, Jones S et al., 2011. Utility of Hovmöller diagrams to diagnose Rossby wave trains. Tellus A. 63:991-1006. DOI: https://doi.org/10.1111/j.1600-0870.2011.00541.x
Godínez VM, Beier E, Lavín MF, Kurczyn JA, 2010. Circulation at the entrance of the Gulf of California from satellite altimeter and hydrographic observations. J. Geophys. Res. Ocean. 115:1-15. DOI: https://doi.org/10.1029/2009JC005705
Goericke R, Olson RJ, Shalapyonok A., 2000. A novel niche for Prochlorococcus sp. in the low-light suboxic environments in the Arabian Sea and the Eastern Tropical North Pacific. Deep. Res. I 47:1183-205. DOI: https://doi.org/10.1016/S0967-0637(99)00108-9
Good SA, Martin MJ, Rayner NA, 2013. EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Ocean. 118:6704-16. DOI: https://doi.org/10.1002/2013JC009067
Kessler WS, 1990. Observations of Long Rossby Waves in the Northern Tropical Pacific. J. Geophys. Res. 95:5183-217. DOI: https://doi.org/10.1029/JC095iC04p05183
Kessler WS, 2006. The circulation of the Eastern Tropical Pacific: a review. Prog. Oceanogr. 69:181-217. DOI: https://doi.org/10.1016/j.pocean.2006.03.009
Killworth PD, Cipollini P, Uz BM, Blundell JR, 2004. Physical and biological mechanisms for planetary waves observed in satellite-derived chlorophyll. J. Geophys. Res. C Ocean. 109:1-18. DOI: https://doi.org/10.1029/2003JC001768
Kurian J, Colas F, Capet X et al., 2011. Eddy properties in the California Current System. J. Geophys. Res. 116:C08027. DOI: https://doi.org/10.1029/2010JC006895
Lalli C, Parsons TR, 1997. Biological oceanography: an introduction. Elsevier, Amsterdam, The Netherlands. 314 pp. DOI: https://doi.org/10.1016/B978-075063384-0/50001-3
Lavin P, González B, Santibáñez JF et al., 2010. Novel lineages of Prochlorococcus thrive within the oxygen minimum zone of the eastern tropical South Pacific. Environ. Microbiol. Rep. 2:728-38. DOI: https://doi.org/10.1111/j.1758-2229.2010.00167.x
Legendre P, Legendre L, 2012. Numerical ecology. Elsevier, Amsterdam, The Netherlands. 1006 pp.
Letelier RM, Karl DM, Abbott MR, Bidigare RR, 2004. Light driven seasonal patterns of chlorophyll and nitrate in the lower euphotic zone of the North Pacific Subtropical Gyre. Limnol. Oceanogr. 49:508-19. DOI: https://doi.org/10.4319/lo.2004.49.2.0508
Li X, Yang D, Yang J et al., 2021. Validation of NOAA CYGNSS wind speed product with the CCMP data. Remote Sensing. 13:1832. DOI: https://doi.org/10.3390/rs13091832
Márquez-Artavia A, Sánchez-Velasco L, Barton ED et al., 2019. A suboxic chlorophyll-a maximum persists within the Pacific oxygen minimum zone off Mexico. Deep. Res. Part II Top. Stud. Oceanogr. 169-170:104686. DOI: https://doi.org/10.1016/j.dsr2.2019.104686
Martinez-Vicente V, Dall’Olmo G, Tarran G et al., 2013. Optical backscattering is correlated with phytoplankton carbon across the Atlantic Ocean. Geophys. Res. Lett. 40:1154-8. DOI: https://doi.org/10.1002/grl.50252
Mason E, Pascual A, McWilliams JC, 2014. A new sea surface height-based code for oceanic mesoscale eddy tracking. J. Atmos. Ocean. Technol. 31:1181-8. DOI: https://doi.org/10.1175/JTECH-D-14-00019.1
Mcdougall TJ, Barker PM, 2017. Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox. Available from: https://www.teos-10.org/pubs/Getting_Started.pdf
McGillicuddy DJ, 2016. Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale. Annual Review of Marine Science. 8:125-59. DOI: https://doi.org/10.1146/annurev-marine-010814-015606
McGillicuddy DJ, Anderson L, Bates NR et al., 2007. Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science. 316:1021-6. DOI: https://doi.org/10.1126/science.1136256
Meyers G, 1979. On the annual Rossby wave in the Tropical North Pacific Ocean. J. Phys. Oceanogr. 9:663-74. DOI: https://doi.org/10.1175/1520-0485(1979)009<0663:OTARWI>2.0.CO;2
Mignot A, Claustre H, D’Ortenzio F et al., 2011. From the shape of the vertical profile of in vivo fluorescence to Chlorophyll-a concentration. Biogeosciences 8:2391-406. DOI: https://doi.org/10.5194/bg-8-2391-2011
Mignot A, Claustre H, Uitz J et al., 2014. Understanding the seasonal dynamics and the deep chlorophyll maximum in oligotrophic environments: a Bio-Argo investigation. AGU. Glob. Biogeochem. Cycles. 28:856-76. DOI: https://doi.org/10.1002/2013GB004781
Mignot A, Ferrari R, Claustre H, 2018. Floats with bio-optical sensors reveal what processes trigger the North Atlantic bloom. Nat. Commun. 9:1-9. DOI: https://doi.org/10.1038/s41467-017-02143-6
Moore LR, Goericke R, Chisholm SW, 1995. Comparative physiology of Synechococcus and Prochlorococcus: Influence of light and temperature on growth, pigments, fluorescence and absorptive properties. Mar. Ecol. Prog. Ser. 116:259-75. DOI: https://doi.org/10.3354/meps116259
Muñoz-Anderson M, Millán-Núñez R, Hernández-Walls R et al., 2015. Fitting vertical chlorophyll profiles in the California Current using two Gaussian curves. Limnol. Oceanogr. Methods 13:416-24. DOI: https://doi.org/10.1002/lom3.10034
Ollitrault M, Rannou J-P, 2013. ANDRO : an Argo-based deep displacement dataset. J. Atmos 30: 759-88. DOI: https://doi.org/10.1175/JTECH-D-12-00073.1
Organelli E, Claustre H, Bricaud A et al., 2016. A novel near-real-time quality-control procedure for radiometric profiles measured by bio-Argo floats: Protocols and performances. J. Atmos. Ocean. Technol. 33:937-51. DOI: https://doi.org/10.1175/JTECH-D-15-0193.1
Pennington JT, Mahoney KL, Kuwahara VS et al., 2006. Primary production in the eastern tropical Pacific: a review. Prog. Oceanogr. 69:285-317. DOI: https://doi.org/10.1016/j.pocean.2006.03.012
Polito PS, Liu WT, 2003. Global characterization of Rossby waves at several spectral bands. J. Geophys. Res. 108:3018. DOI: https://doi.org/10.1029/2000JC000607
Polito PS, Sato OT, 2015. Do eddies ride on Rossby waves? J. Geophys. Res. Oceans. 120:5417-35. DOI: https://doi.org/10.1002/2015JC010737
Poteau A, Organelli E, National I, Xing X, 2019. Quality control for Biogeochemical-Argo radiometry. Available from: https://archimer.ifremer.fr/doc/00513/62466/66773.pdf
Qiu B, Miao W, Müller P, 1997. Propagation and decay of forced and free baroclinic Rossby waves in off-equatorial oceans. J. Phys. Oceanogr. 27:2405-17. DOI: https://doi.org/10.1175/1520-0485(1997)027<2405:PADOFA>2.0.CO;2
Rasse R, Dall’Olmo G, Graff J et al., 2017. Evaluating optical proxies of particulate organic carbon across the surface Atlantic ocean. Front. Mar. Sci. 4:1-18. DOI: https://doi.org/10.3389/fmars.2017.00367
Ravichandran M, Girishkumar MS, Riser S, 2012. Observed variability of chlorophyll-a using Argo profiling floats in the southeastern Arabian Sea. Deep. Res. Part I Oceanogr. Res. Pap. 65:15-25. DOI: https://doi.org/10.1016/j.dsr.2012.03.003
Rabinovich E, Govindjee, 1969. Photosynthesis. Available from: https://www.life.illinois.edu/govindjee/Electronic%20Publications/Books/Photosynthesis.pdf
R Core Team, 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from: https://www.R-project.org/
Rembauville M, Briggs N, Ardyna M et al., 2017. Plankton assemblage estimated with BGC-Argo floats in the Southern Ocean: implications for seasonal successions and particle export. J. Geophys. Res. Ocean. 122:8278-92. DOI: https://doi.org/10.1002/2017JC013067
Ripa P, 2002. Least squares data fitting. Ciencias Mar. 28:79-105. DOI: https://doi.org/10.7773/cm.v28i1.204
Roesler C, Uitz J, Claustre H et al., 2017. Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET Labs ECO sensors. Limnol. Oceanogr. Methods 15:572-85. DOI: https://doi.org/10.1002/lom3.10185
Sakamoto CM, Karl DM, Jannasch, HW et al., 2004. Influence of Rossby waves on nutrient dynamics and the plankton community structure in the North Pacific subtropical gyre. J. Geophys. Res. C Ocean. 109. DOI: https://doi.org/10.1029/2003JC001976
Sathyendranath S, Brewin RJW, Brockmann C et al., 2019. An ocean-colour time series for use in climate studies: the experience of the Ocean-Colour Climate Change Initiative (OC-CCI). Sensors. 19:4285. DOI: https://doi.org/10.3390/s19194285
Sauzède R, Bittig HC, Claustre H et al., 2017. Estimates of water-column nutrient concentrations and carbonate system parameters in the global ocean : a novel approach based on neural networks. Front. Mar. Sci. 4:1-17. DOI: https://doi.org/10.3389/fmars.2017.00128
Schmechtig C, Boss ES, Briggs NT et al., 2019. BGC Argo quality control manual for particles backscattering. Available from: https://archimer.ifremer.fr/doc/00491/60262/63668.pdf
Schmechtig C, Claustre H, Poteau A et al, 2023. Bio-Argo quality control manual for Chlorophyll-a concentration. Available from: https://archimer.ifremer.fr/doc/00243/35385/60181.pdf
Schmechtig C, Poteau A, Claustre H et al., 2018. Processing BGC-Argo particle backscattering at the DAC level. Available from: https://archimer.ifremer.fr/doc/00283/39459/56146.pdf
Sébastien L, Josse J, Husson F, 2008. FactoMineR: An R Packages for Multivariate Analysis. J. Stat. Softw. 25:1-18. DOI: https://doi.org/10.18637/jss.v025.i01
Siegel DA, McGillicuddy DJ Jr., Fields EA, 1999. Mesoscale eddies, satellite altimetry, and new production in the Sargasso Sea. J. Geophys. Res. 104:13359-79. DOI: https://doi.org/10.1029/1999JC900051
Stramski D, Boss E, Bogucki D, Voss KJ, 2004. The role of seawater constituents in light backscattering in the ocean. Prog. Oceanogr. 61:27-56. DOI: https://doi.org/10.1016/j.pocean.2004.07.001
Stramski D, Reynolds RA, Babin M et al., 2008. Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans. Biogeosciences 5:171-201. DOI: https://doi.org/10.5194/bg-5-171-2008
Uz BM, Yoder JA, Osychny V, 2001. Pumping of nutrients to ocean surface waters by the action of propagating planetary waves. Nature 409:597-600. DOI: https://doi.org/10.1038/35054527
Watanabe WB, Polito PS, da Silveira ICA, 2016. Can a minimalist model of wind forced baroclinic Rossby waves produce reasonable results? Ocean Dyn. 66:539-48. DOI: https://doi.org/10.1007/s10236-016-0935-1
Whitmire AL, Letelier RM, Villagrán V, Ulloa O, 2009. Autonomous observations of in vivo fluorescence and particle backscattering in an oceanic oxygen minimum zone. Opt. Express 17:21992-2004. DOI: https://doi.org/10.1364/OE.17.021992
Wojtasiewicz B, Trull TW, Udaya Bhaskar TVS et al., 2018. Autonomous profiling float observations reveal the dynamics of deep biomass distributions in the denitrifying oxygen minimum zone of the Arabian Sea. J. Mar. Syst. 207:103103. DOI: https://doi.org/10.1016/j.jmarsys.2018.07.002

How to Cite

Márquez-Artavia, A., Márquez-Artavia, X., Salazar-Ceciliano, J. P., Sánchez-Velasco, L., Beier, E., & Paulmier, A. (2024). Rossby waves impact on persistent oxic and suboxic chlorophyll maxima in the Eastern Tropical North Pacific. Advances in Oceanography and Limnology, 15(1). https://doi.org/10.4081/aiol.2024.11301