Mucus secretions in Cnidarian, an ecological, adaptive and evolutive tool

Submitted: 3 December 2022
Accepted: 25 January 2023
Published: 29 December 2022
Abstract Views: 1392
PDF: 389
HTML: 309
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Mucus secretion provides an interface with unique and multifunctional properties between the epithelial cells of many aquatic organisms and their surrounding environment. Indeed, mucus is involved in various essential biological processes including feeding, reproduction, osmoregulation, competition for space, defense against pathogens, xenobiotics, and a multitude of environmental stressors. The ability to produce a functional mucus layer is an important evolutionary step, arising first in Cnidaria that allowed for the development of the mucus-lined digestive cavity seen in higher metazoans. Mucus secretion by cnidarians has been moderately investigated in both corals and jellyfish, which among cnidarians are the ones that have shown the highest secretion rates to date. However, although in corals the production of mucus has received more attention, especially in view of the important ecological role played in coral reefs, in medusozoans the topic is little considered. Although the mucus secreted by corals has innumerable and important immunological, nutritional, and protective responsibilities, it should be remembered that jellyfish too represent a fundamental component of marine trophic web, playing numerous and important roles that are still unclear today. What is certain is that jellyfish are characterized (especially in the era of climate change) by large fluctuations in population density, the ecological implications of which are poorly understood. However, in both cases (Medusozoans and Anthozoans) to date some aspects relating to mucous secretions seem completely obscure, such as the microbiome and its variations as a function of environmental conditions or ontogenetic development, its implications in the field of immunological ecology, the consequent energy costs and finally the role played by the mucus in evolutionary terms. This review summarizes the properties, functions, ecological implications and evolutionary importance of mucus, in cnidarians, mainly focusing its roles in corals and jellyfish. Understanding these aspects relating to the ecological and evolutionary importance played by mucus is of fundamental importance for the ecosystems functioning.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Aglieri, G., Papetti, C., Zane, L., Milisenda, G., Boero, F., Piraino, S., 2014. First evidence of inbreeding, relatedness and chaotic genetic patchiness in the holoplanktonic jellyfish Pelagia noctiluca (Scyphozoa, Cnidaria). PLoS One. 9:e99647. DOI: https://doi.org/10.1371/journal.pone.0099647
Ainsworth, T.D., Thurber, R.V., Gates, R.D., 2010. The future of coral reefs: a microbial perspective. Trends Ecol. Evol. 25:233–40. DOI: https://doi.org/10.1016/j.tree.2009.11.001
Albano, M., Panarello, G., Di Paola, D., D’Angelo, G., Granata, A., Savoca, S., Capillo, G., 2021. The mauve stinger Pelagia noctiluca (Cnidaria, Scyphozoa) plastics contamination, the Strait of Messina case. Int. J. Environ. Stud. 78:977–82. DOI: https://doi.org/10.1080/00207233.2021.1893489
Alesci, A., Pergolizzi, S., Savoca, S., Fumia, A., Mangano, A., Albano, M., et al., 2022. Detecting Intestinal Goblet Cells of the Broadgilled Hagfish Eptatretus cirrhatus (Forster, 1801): A Confocal Microscopy Evaluation. Biology (Basel). 11:151–62. DOI: https://doi.org/10.3390/biology11091366
Allers, E., Niesner, C., Wild, C., Pernthaler, J., 2008. Microbes enriched in seawater after addition of coral mucus. Appl. Environ. Microbiol. 74:3274–8. DOI: https://doi.org/10.1128/AEM.01870-07
Ames, C.L., Klompen, A.M.L., Badhiwala, K., Muffett, K., Reft, A.J., Kumar, M., et al., 2020. Cassiosomes are stinging-cell structures in the mucus of the upside-down jellyfish Cassiopea xamachana. Commun. 3:67. DOI: https://doi.org/10.1038/s42003-020-0777-8
Aneiros, A., Garateix, A., 2004. Bioactive peptides from marine sources: Pharmacological properties and isolation procedures. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 803:41–53. DOI: https://doi.org/10.1016/j.jchromb.2003.11.005
Angiolillo, M., La Mesa, G., Giusti, M., Salvati, E., Di Lorenzo, B., Rossi, L., et al., 2021. New records of scleractinian cold-water coral (CWC) assemblages in the southern Tyrrhenian Sea (western Mediterranean Sea): Human impacts and conservation prospects. Prog. Oceanogr. 197:102656. DOI: https://doi.org/10.1016/j.pocean.2021.102656
Anthony, K.R.N., Hoogenboom, M.O., Maynard, J.A., Grottoli, A.G., Middlebrook, R., 2009. Energetics approach to predicting mortality risk from environmental stress: a case study of coral bleaching. Funct. Ecol. 23:539–50. DOI: https://doi.org/10.1111/j.1365-2435.2008.01531.x
Apprill, A., 2017. Marine animal microbiomes: toward understanding host–microbiome interactions in a changing ocean. Front. Mar. Sci. 4:222. DOI: https://doi.org/10.3389/fmars.2017.00222
Arai, M.N., 1988. Interactions of fish and pelagic coelenterates. Can. J. Zool. 66:1913–27. DOI: https://doi.org/10.1139/z88-280
Arai, M.N., 1996. A Functional Biology of Scyphozoa, A Functional Biology of Scyphozoa. Springer Science & Business Media, Amsterdam, The Netherlands. 316 pp. DOI: https://doi.org/10.1007/978-94-009-1497-1
Arai, M.N., 2005. Predation on pelagic coelenterates: A review. J. Mar. Biol. Assoc. United Kingdom. 85:523-36. DOI: https://doi.org/10.1017/S0025315405011458
Arai, M.N., Welch, D.W., Dunsmuir, A.L., Jacobs, M.C., Ladouceur, A.R., 2003. Digestion of pelagic Ctenophora and Cnidaria by fish. Can. J. Fish. Aquat. Sci. 60:825–9. DOI: https://doi.org/10.1139/f03-071
Aranda, M., Li, Y., Liew, Y.J., Baumgarten, S., Simakov, O., Wilson, M.C., et al., 2016. Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Sci. Rep. 6:1–15. DOI: https://doi.org/10.1038/srep39734
Armitage, S.A.O., Thompson, J.J.W., Rolff, J., Siva‐Jothy, M.T., 2003. Examining costs of induced and constitutive immune investment in Tenebrio molitor. J. Evol. Biol. 16:1038–44. DOI: https://doi.org/10.1046/j.1420-9101.2003.00551.x
Augustin, R., Bosch, T.C.G., 2010. Cnidarian immunity: A tale of two barriers. Adv. Exp. Med. Biol. 708:1–16. DOI: https://doi.org/10.1007/978-1-4419-8059-5_1
Avent, S.R., Bollens, S.M., Butler, M., Horgan, E., Rountree, R., 2001. Planktonic hydroids on Georges Bank: Ingestion and selection by predatory fishes. Deep. Res. Part II Top. Stud. Oceanogr. 48:673–84. DOI: https://doi.org/10.1016/S0967-0645(00)00093-X
Baier, R.E., Gucinski, H., Meenaghan, M.A., Wirth, J., Glantz, P.Q., 1985. Biophysical studies of mucosal surfaces. Oral interfacial React. bone, soft tissue saliva.
Bak, R.P.M., Elgershuizen, J.H.B.W., 1976. Patterns of Oil-Sediment rejection in corals. Mar. Biol. 37:105–13. DOI: https://doi.org/10.1007/BF00389121
Baker, D.M., Freeman, C.J., Wong, J.C.Y., Fogel, M.L., Knowlton, N., 2018. Climate change promotes parasitism in a coral symbiosis. ISME J. 12:921–30. DOI: https://doi.org/10.1038/s41396-018-0046-8
Bakshani, C.R., Morales-Garcia, A.L., Althaus, M., Wilcox, M.D., Pearson, J.P., Bythell, J.C., Burgess, J.G., 2018. Evolutionary conservation of the antimicrobial function of mucus: A first defence against infection. Biofilms Microbiomes 4:1–12. DOI: https://doi.org/10.1038/s41522-018-0057-2
Bansil, R., Turner, B.S., 2006. Mucin structure, aggregation, physiological functions and biomedical applications. Curr. Opin. Colloid Interface Sci. 11:164–70. DOI: https://doi.org/10.1016/j.cocis.2005.11.001
Barboza, L.G.A., Dick Vethaak, A., Lavorante, B.R.B.O., Lundebye, A.K., Guilhermino, L., 2018. Marine microplastic debris: An emerging issue for food security, food safety and human health. Mar. Pollut. Bull. 133:336-48. DOI: https://doi.org/10.1016/j.marpolbul.2018.05.047
Basso, L., Rizzo, L., Marzano, M., Intranuovo, M., Fosso, B., Pesole, G., et al., 2019. Jellyfish summer outbreaks as bacterial vectors and potential hazards for marine animals and humans health? The case of Rhizostoma pulmo (Scyphozoa, Cnidaria). Sci. Total Environ. 692:305–18. DOI: https://doi.org/10.1016/j.scitotenv.2019.07.155
Bastidas, C., Garcia, E.M., 2004. Sublethal effects of mercury and its distribution in the coral Porites astreoides. Mar. Ecol. Prog. Ser. 267:133–43. DOI: https://doi.org/10.3354/meps267133
Bavington, C.D., Lever, R., Mulloy, B., Grundy, M.M., Page, C.P., Richardson, N. V., McKenzie, J.D., 2004. Anti-adhesive glycoproteins in echinoderm mucus secretions. Comp. Biochem. Physiol. - B Biochem. Mol. Biol. 139:607–17. DOI: https://doi.org/10.1016/j.cbpc.2004.07.008
Bednarz, V.N., Grover, R., Maguer, J.-F., Fine, M., Ferrier-Pagès, C., 2017. The assimilation of diazotroph-derived nitrogen by scleractinian corals depends on their metabolic status. MBio 8:e02058-16. DOI: https://doi.org/10.1128/mBio.02058-16
Benson, A.A., Muscatine, L., 1974. Wax in coral mucus: energy transfer from corals to reef fishes 1. Limnol. Oceanogr. 19:810–4. DOI: https://doi.org/10.4319/lo.1974.19.5.0810
Bessel-Browne, P., Negri, A.P., Fisher, R., Clode, P.L., Jones, R., 2017. Impacts of light limitation on corals and crustose coralline algae. Sci Rep. 7:11553. DOI: https://doi.org/10.1038/s41598-017-11783-z
Beutler, B., 2004. Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430:257–63. DOI: https://doi.org/10.1038/nature02761
Biggerstaff, A., Smith, D.J., Jompa, J., Bell, J.J., 2017. Metabolic responses of a phototrophic sponge to sedimentation supports transitions to sponge-dominated reefs. Sci. Rep. 7:2725. DOI: https://doi.org/10.1038/s41598-017-03018-y
Blanchet, M., Pringault, O., Bouvy, M., Catala, P., Oriol, L., Caparros, J., et al., 2015. Changes in bacterial community metabolism and composition during the degradation of dissolved organic matter from the jellyfish Aurelia aurita in a Mediterranean coastal lagoon. Environ. Sci. Pollut. Res. 22:13638–53. DOI: https://doi.org/10.1007/s11356-014-3848-x
Bongaerts, P., Hoeksema, B.W., Hay, K.B., Hoegh-Guldberg, O., 2012. Mushroom corals overcome live burial through pulsed inflation. Coral Reefs 31:399. DOI: https://doi.org/10.1007/s00338-011-0862-z
Bourne, D.G., Garren, M., Work, T.M., Rosenberg, E., Smith, G.W., Harvell, C.D., 2009. Microbial disease and the coral holobiont. Trends Microbiol. 17:554–62. DOI: https://doi.org/10.1016/j.tim.2009.09.004
Bourne, D.G., Morrow, K.M., Webster, N.S., 2016. Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Annu Rev Microbiol 70:317–40. DOI: https://doi.org/10.1146/annurev-micro-102215-095440
Branch, G.M., 1981. The biology of limpets: Physical factors, energy flow, and ecological interactions. Oceanogr. Mar. Biol. Annu. Rev. 19:235–380.
Brandt, M.E., McManus, J.W., 2009. Dynamics and impact of the coral disease white plague: Insights from a simulation model. Dis. Aquat. Organ. 87:117–33. DOI: https://doi.org/10.3354/dao02137
Brotz, L., Cheung, W.W.L., Kleisner, K., Pakhomov, E., Pauly, D., 2012. Increasing jellyfish populations: Trends in Large Marine Ecosystems, in: Hydrobiologia. Springer, Amsterdam, the Netherlands. p. 3–20. DOI: https://doi.org/10.1007/978-94-007-5316-7_2
Brown, B.E., Bythell, J.C., 2005. Perspectives on mucus secretion in reef corals. Mar. Ecol. Prog. Ser. 296:291–309. DOI: https://doi.org/10.3354/meps296291
Brown, B.E., Howard, L.S., 1985. Assessing the Effects of “Stress” on Reef Corals. Adv. Mar. Biol. 22:1–63. DOI: https://doi.org/10.1016/S0065-2881(08)60049-8
Bruno, C., Blasi, M.F., Mattei, D., Martellone, L., Brancaleone, E., Savoca, S., Favero, G., 2022. Polymer composition analysis of plastic debris ingested by loggerhead turtles (Caretta caretta) in Southern Tyrrhenian Sea through ATR-FTIR spectroscopy. Mar. Environ. Res. 179:105676. DOI: https://doi.org/10.1016/j.marenvres.2022.105676
Bythell, J.C., Wild, C., 2011. Biology and ecology of coral mucus release. J. Exp. Mar. Bio. Ecol. 408:88–93. DOI: https://doi.org/10.1016/j.jembe.2011.07.028
Cabillon, N.A.R., Lazado, C.C., 2019. Mucosal barrier functions of fish under changing environmental conditions. Fishes. 4:2. DOI: https://doi.org/10.3390/fishes4010002
Calow, P., 1979. Why some metazoan mucus secretions are more susceptible to microbial attack than others. Am. Nat. 114:149–52. DOI: https://doi.org/10.1086/283460
Camacho-Pacheco, A.V., Gómez-Salinas, L.C., Cisneros-Mata, M.Á., Rodríguez-Félix, D., Díaz-Tenorio, L.M., Unzueta-Bustamante, M.L., 2022. Feeding Behavior, Shrinking, and the Role of Mucus in the Cannonball Jellyfish Stomolophus sp. 2 in Captivity. Diversity. 14:103. DOI: https://doi.org/10.3390/d14020103
Canepa, A., Fuentes, V., Sabatés, A., Piraino, S., Boero, F., Gili, J.M., 2014. Pelagia noctiluca in the mediterranean sea, in: Jellyfish Blooms. p. 237–66. DOI: https://doi.org/10.1007/978-94-007-7015-7_11
Cardona, L., Álvarez de Quevedo, I., Borrell, A., Aguilar, A., 2012. Massive consumption of gelatinous plankton by Mediterranean apex predators. PLoS One 7:e31329. DOI: https://doi.org/10.1371/journal.pone.0031329
Cates, N., 1975. Productivity and organic consumption in Cassiopea and Condylactus. J. Exp. Mar. Bio. Ecol. 18:55–9. DOI: https://doi.org/10.1016/0022-0981(75)90016-7
Celli, J., Gregor, B., Turner, B., Afdhal, N.H., Bansil, R., Erramilli, S., 2005. Viscoelastic properties and dynamics of porcine gastric mucin. Biomacromolecules 6:1329–33. DOI: https://doi.org/10.1021/bm0493990
Chang, E.S., Neuhof, M., Rubinstein, N.D., Diamant, A., Philippe, H., Huchon, D., Cartwright, P., 2015. Genomic insights into the evolutionary origin of Myxozoa within Cnidaria. Proc. Natl. Acad. Sci. U. S. A. 112:14912–7. DOI: https://doi.org/10.1073/pnas.1511468112
Clarke, J.L., Davey, P.A., Aldred, N., Aldred, N., 2020. Sea anemones (Exaiptasia pallida) use a secreted adhesive and complex pedal disc morphology for surface attachment. BMC Zool. 5:1–13. DOI: https://doi.org/10.1186/s40850-020-00054-6
Coffroth, M.A., 1990. Mucous sheet formation on poritid corals: An evaluation of coral mucus as a nutrient source on reefs. Mar. Biol. 105:39–49. DOI: https://doi.org/10.1007/BF01344269
Coffroth, M.A., Lasker, H.R., Diamond, M.E., Bruenn, J.A., Bermingham, E., 1992. DNA fingerprints of a gorgonian coral: a method for detecting clonal structure in a vegetative species. Mar. Biol. 114:317–25. DOI: https://doi.org/10.1007/BF00349534
Collins, A.G., 2009. Recent Insights into Cnidarian Phylogeny. Smithsonian. Contributions to Marine Sciences. 38:139–49.
Condon, P., Desbordes, G., Miller, W.B., DeSteno, D., 2013. Meditation Increases Compassionate Responses to Suffering. Psychol. Sci. 24, 2125–2127. DOI: https://doi.org/10.1177/0956797613485603
Condon, R.H., Graham, W.M., Duarte, C.M., Pitt, K.A., Lucas, C.H., Haddock, S.H.D., et al., 2012. Questioning the rise of gelatinous Zooplankton in the world’s oceans. Bioscience 62:160–9. DOI: https://doi.org/10.1525/bio.2012.62.2.9
Condon, R.H., Steinberg, D.K., Del Giorgio, P.A., Bouvier, T.C., Bronk, D.A., Graham, W.M., Ducklow, H.W., 2011. Jellyfish blooms result in a major microbial respiratory sink of carbon in marine systems. Proc. Natl. Acad. Sci. U. S. A. 108:10225–30. DOI: https://doi.org/10.1073/pnas.1015782108
Cone, R.A., 2009. Barrier properties of mucus. Adv. Drug Deliv. Rev. 61:75–85. DOI: https://doi.org/10.1016/j.addr.2008.09.008
Cooney, R.P., Pantos, O., Le Tissier, M.D.A., Barer, M.R., O’Donnell, A.G., Bythell, J.C., 2002. Characterization of the bacterial consortium associated with black band disease in coral using molecular microbiological techniques. Environ. Microbiol. 4:401–13. DOI: https://doi.org/10.1046/j.1462-2920.2002.00308.x
Costa, E., Gambardella, C., Piazza, V., Vassalli, M., Sbrana, F., Lavorano, S., et al., 2020. Microplastics ingestion in the ephyra stage of Aurelia sp. triggers acute and behavioral responses. Ecotoxicol. Environ. Saf. 189:109983. DOI: https://doi.org/10.1016/j.ecoenv.2019.109983
Costa, R., Capillo, G., Albergamo, A., Volsi, R.L., Bartolomeo, G., Bua, G., et al., 2019. A multi-screening evaluation of the nutritional and nutraceutical potential of the mediterranean jellyfish pelagia noctiluca. Mar. Drugs 17:172. DOI: https://doi.org/10.3390/md17030172
Crossland, C.J., 1987. In situ release of mucus and DOC-lipid from the corals Acropora variabilis and Stylophora pistillata in different light regimes. Coral Reefs 6:35–42. DOI: https://doi.org/10.1007/BF00302210
Crossland, C.J., Barnes, D.J., Borowitzka, M.A., 1980. Diurnal lipid and mucus production in the staghorn coral Acropora acuminata. Mar. Biol. 60:81–90. DOI: https://doi.org/10.1007/BF00389151
D’Ambra, I., Merquiol, L., Graham, W.M., Costello, J.H., 2021. “Indirect development” increases reproductive plasticity and contributes to the success of scyphozoan jellyfish in the oceans. Sci. Rep. 11:1–8. DOI: https://doi.org/10.1038/s41598-021-98171-w
Dallmeyer, D.G., Porter, J.W., Smith, G.J., 1982. Effects of particulate peat on the behavior and physiology of the Jamaican reef-building coral Montastrea annularis. Mar. Biol. 68:229–33. DOI: https://doi.org/10.1007/BF00409589
Daly, M., Brugler, M.R., Cartwright, P., Collins, A.G., Dawson, M.N., Fautin, D.G., et al., 2007. The phylum Cnidaria: A review of phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa. 1668:127–82. DOI: https://doi.org/10.11646/zootaxa.1668.1.11
Davies, J.M., Viney, C., 1998. Water-mucin phases: Conditions for mucus liquid crystallinity. Thermochim. Acta. 315:39–49. DOI: https://doi.org/10.1016/S0040-6031(98)00275-5
Davies, P.S., 1984. The role of zooxanthellae in the nutritional energy requirements of Pocillopora eydouxi. Coral Reefs. 2:181–6.
Davy, S.K., Allemand, D., Weis, V.M., 2012. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 76:229–61. DOI: https://doi.org/10.1128/MMBR.05014-11
Davy, J.E., Patten, N.L., 2007. Morphological diversity of virus-like particles within the surface microlayer of scleractinian corals. Aquat. Microb. Ecol. 47:37–44. DOI: https://doi.org/10.3354/ame047037
de Oliveira Soares, M., Matos, E., Lucas, C., Rizzo, L., Allcock, L., Rossi, S., 2020. Microplastics in corals: An emergent threat. Mar. Pollut. Bull. 161:111810. DOI: https://doi.org/10.1016/j.marpolbul.2020.111810
Deason, E.E., Smayda, T.J., 1982. Ctenophore-zooplankton-phytoplankton interactions in Narragansett Bay, Rhode Island, USA, during 1972-1977. J. Plankton Res. 4:203–17. DOI: https://doi.org/10.1093/plankt/4.2.203
Decker, M.B., Robinson, K.L., Dorji, S., Cieciel, K.D., Barceló, C., Ruzicka, J.J., Brodeur, R.D., 2018. Jellyfish and forage fish spatial overlap on the eastern Bering Sea shelf during periods of high and low jellyfish biomass. Mar. Ecol. Prog. Ser. 591:57–69. DOI: https://doi.org/10.3354/meps12273
Devereux, R., Hartl, M.G.J., Bell, M., Capper, A., 2021. The abundance of microplastics in cnidaria and ctenophora in the North Sea. Mar. Pollut. Bull. 173:112992. DOI: https://doi.org/10.1016/j.marpolbul.2021.112992
Disalvo, L.H., 2021. 12 Ingestion and Assimilation of Bacteria by Two Scleractinian Coral Species. Exp. Coelenterate Biol. Available from: https://www.degruyter.com/document/doi/10.1515/9780824885335-014/pdf
Doyle, T.K., Hays, G.C., Harrod, C., Houghton, J.D.R., 2014. Ecological and societal benefits of jellyfish, in: Pitt, K.A., Lucas, C.H. (Eds.), Jellyfish Blooms. Springer Dordrecht, Netherlands. p. 105–127. DOI: https://doi.org/10.1007/978-94-007-7015-7_5
Doyle, T.K., Houghton, J.D.R., McDevitt, R., Davenport, J., Hays, G.C., 2007. The energy density of jellyfish: Estimates from bomb-calorimetry and proximate-composition. J. Exp. Mar. Bio. Ecol. 343:239–52. DOI: https://doi.org/10.1016/j.jembe.2006.12.010
Ducklow, H.W., Mitchell, R., 1979. Bacterial populations and adaptations in the mucus layers on living corals 1. Limnol. Oceanogr. 24:715–25. DOI: https://doi.org/10.4319/lo.1979.24.4.0715
Ducklow, H.W., Mitchell, R., 1991. Composition of mucus released by coral reef coelenterates. Limnol. Oceanogr. 24:706–14. DOI: https://doi.org/10.4319/lo.1979.24.4.0706
Duerden, J.E., 1906. XXXIV.—The morphology of the Madreporaria.—VIII. The primary septa of the Rugosa. J. Nat. Hist. 18:226–42. DOI: https://doi.org/10.1080/00222930608562605
Edmunds, P.J., Davies, P.S., 1989. An energy budget for Porites porites (Scleractinia), growing in a stressed environment. Coral Reefs 8:37–43. DOI: https://doi.org/10.1007/BF00304690
Evans, N.M., Lindner, A., Raikova, E. V., Collins, A.G., Cartwright, P., 2008. Phylogenetic placement of the enigmatic parasite, Polypodium hydriforme, within the Phylum Cnidaria. BMC Evol. Biol. 8:1–12. DOI: https://doi.org/10.1186/1471-2148-8-139
Ferrier-Pagès, C., Peirano, A., Abbate, M., Cocito, S., Negri, A., Rottier, C., et al., 2011. Summer autotrophy and winter heterotrophy in the temperate symbiotic coral Cladocora caespitosa. Limnol. Oceanogr. 56:1429–38. DOI: https://doi.org/10.4319/lo.2011.56.4.1429
Ferrier-Pagès, C., Gattuso, J.P., Cauwet, G., Jaubert, J., Allemand, D., 1998. Release of dissolved organic carbon and nitrogen by the zooxanthellate coral Galaxea fascicularis. Mar. Ecol. Prog. Ser. 172:265–74. DOI: https://doi.org/10.3354/meps172265
Finnerty, J.R., Pang, K., Burton, P., Paulson, D., Martindale, M.Q., 2004. Origins of bilateral symmetry: Hox and dpp expression in a sea anemone. Science. 304:1335–7. DOI: https://doi.org/10.1126/science.1091946
Fransolet, D., Herman, A.-C., Roberty, S., Plumier, J.-C., 2012. Increased number of mucocytes in Aiptasia pallida following bleaching. 12th International Coral Reef Symposium. Available from: https://www.icrs2012.com/proceedings/manuscripts/ICRS2012_9A_5.pdf
Fransolet, D., Roberty, S., Herman, A.C., Tonk, L., Hoegh-Guldberg, O., Plumier, J.C., 2013. Increased Cell Proliferation and Mucocyte Density in the Sea Anemone Aiptasia pallida Recovering from Bleaching. PLoS One 8:e65015. DOI: https://doi.org/10.1371/journal.pone.0065015
Frias-Lopez, J., Zerkle, A.L., Bonheyo, G.T., Fouke, B.W., 2002. Partitioning of bacterial communities between seawater and healthy, black band diseased, and dead coral surfaces. Appl. Environ. Microbiol. 68:2214–28. DOI: https://doi.org/10.1128/AEM.68.5.2214-2228.2002
Futch, J.C., Griffin, D.W., Lipp, E.K., 2010. Human enteric viruses in groundwater indicate offshore transport of human sewage to coral reefs of the Upper Florida Keys. Environ. Microbiol. 12:964–74. DOI: https://doi.org/10.1111/j.1462-2920.2010.02141.x
Goffredo, S., Dubinsky, Z., (Eds.), 2016. The Cnidaria, past, present and future: The world of medusa and her sisters. Springer, Amsterdam, The Netherlands. 855 pp. DOI: https://doi.org/10.1007/978-3-319-31305-4
Goldberg, W.M., 2002. Feeding behavior, epidermal structure and mucus cytochemistry of the scleractinian Mycetophyllia reesi, a coral without tentacles. Tissue Cell. 34:232–45. DOI: https://doi.org/10.1016/S0040-8166(02)00009-5
Goldberg, W.M., 2018. Coral food, feeding, nutrition, and secretion: a review. Mar. Org. as Model Syst. Results and Problems in Cell Differentiation. 65:377–421. DOI: https://doi.org/10.1007/978-3-319-92486-1_18
Gottfried, M., Roman, M.R., 1983. Ingestion and incorporation of coral-mucus detritus by reef zooplankton. Mar. Biol. 72:211–8. DOI: https://doi.org/10.1007/BF00396825
Graham, W.M., Gelcich, S., Robinson, K.L., Duarte, C.M., Brotz, L., Purcell, J.E., et al., 2014. Linking human well‐being and jellyfish: ecosystem services, impacts, and societal responses. Front. Ecol. Environ. 12:515–23. DOI: https://doi.org/10.1890/130298
Grange, K.R., 1991. Mutualism between the antipatharian Antipathes fiordensis and the ophiuroid Astrobrachion constrictum in New Zealand fjords, in: Hydrobiologia. Springer, Amsterdam, the Netherlands. p. 297–303. DOI: https://doi.org/10.1007/978-94-011-3240-4_43
Griffiths, R.J., 1977. Thermal stress and the biology of Actinia equina L. (Anthozoa). J. Exp. Mar. Bio. Ecol. 27:141–54. DOI: https://doi.org/10.1016/0022-0981(77)90134-4
Grottoli, A.G., Rodrigues, L.J., Palardy, J.E., 2006. Heterotrophic plasticity and resilience in bleached corals. Nature. 440:1186–9. DOI: https://doi.org/10.1038/nature04565
Grover, R., Ferrier-Pagès, C., Maguer, J.-F., Ezzat, L., Fine, M., 2014. Nitrogen fixation in the mucus of Red Sea corals. J. Exp. Biol. 217:3962–3. DOI: https://doi.org/10.1242/jeb.111591
Haas, A.F., Naumann, M.S., Struck, U., Mayr, C., el-Zibdah, M., Wild, C., 2010. Organic matter release by coral reef associated benthic algae in the Northern Red Sea. J. Exp. Mar. Bio. Ecol. 389:53–60. DOI: https://doi.org/10.1016/j.jembe.2010.03.018
Hadaidi, G., Gegner, H.M., Ziegler, M., Voolstra, C.R., 2019. Carbohydrate composition of mucus from scleractinian corals from the central Red Sea. Coral Reefs 38:21–7. DOI: https://doi.org/10.1007/s00338-018-01758-5
Haeckel, E., 1880. Essais de psychologie cellulaire. Baillière, Paris, France. 206 pp.
Hamilton, L.C., 2016. Where is the North Pole? An election-year survey on global change. Available from: https://scholars.unh.edu/carsey/285/ DOI: https://doi.org/10.34051/p/2020.274
Hanaoka, K., Ohno, H., Wada, N., Ueno, S., Goessler, W., Kuehnelt, D., et al., 2001. Occurrence of organo-arsenicals in jellyfishes and their mucus. Chemosphere. 44:743–9. DOI: https://doi.org/10.1016/S0045-6535(00)00291-5
Hansson, L.J., Norrman, B., 1995. Release of dissolved organic carbon (DOC) by the scyphozoan jellyfish Aurelia aurita and its potential influence on the production of planktic bacteria. Mar. Biol. 121:527–32. DOI: https://doi.org/10.1007/BF00349462
Hatcher, B.G., 1988. Coral reef primary productivity: a beggar’s banquet. Trends Ecol. Evol. 3:106-11. DOI: https://doi.org/10.1016/0169-5347(88)90117-6
Heaslip, S.G., Iverson, S.J., Bowen, W.D., James, M.C., 2012. Jellyfish support high energy intake of leatherback sea turtles (Dermochelys coriacea): video evidence from animal-borne cameras. PLoS One. 7:e33259. DOI: https://doi.org/10.1371/journal.pone.0033259
Houghton, J.D.R., Doyle, T.K., Wilson, M.W., Davenport, J., Hays, G.C., 2006. Jellyfish aggregations and leatherback turtle foraging patterns in a temperate coastal environment. Ecology. 87:1967–72. DOI: https://doi.org/10.1890/0012-9658(2006)87[1967:JAALTF]2.0.CO;2
Howe, P.L., Reichelt-Brushett, A.J., Clark, M.W., 2012. Aiptasia pulchella: A tropical cnidarian representative for laboratory ecotoxicological research. Environ. Toxicol. Chem. 31:2653–62. DOI: https://doi.org/10.1002/etc.1993
Hubot, N., Giering, S.L.C., Lucas, C.H., 2022. Similarities between the biochemical composition of jellyfish body and mucus. J. Plankton Res. 44:337–44. DOI: https://doi.org/10.1093/plankt/fbab091
Huettel, M., Wild, C., Gonelli, S., 2006. Mucus trap in coral reefs: Formation and temporal evolution of particle aggregates caused by coral mucus. Mar. Ecol. Prog. Ser. 307:69–84. DOI: https://doi.org/10.3354/meps307069
Hughes, R.G., 1975. The distribution of epizoites on the hydroid nemertesia antennina (l.). J. Mar. Biol. Assoc. 55:275–294. DOI: https://doi.org/10.1017/S0025315400015940
Hughes, T.P., Barnes, M.L., Bellwood, D.R., Cinner, J.E., Cumming, G.S., Jackson, J.B.C., et al., 2017. Coral reefs in the Anthropocene. Nature. 546:82–90. DOI: https://doi.org/10.1038/nature22901
Iwai, T., Inaba, N., Naundorf, A., Zhang, Y., Gotoh, M., Iwasaki, H., et al., 2002. Molecular cloning and characterization of a novel UDP-GlcNAc: GalNAc-peptide β1,3-N-acetylglucosaminyltransferase (β3Gn-T6), an enzyme synthesizing the core 3 structure of O-glycans. J. Biol. Chem. 277:12802–9. DOI: https://doi.org/10.1074/jbc.M112457200
Jatkar, A.A., Brown, B.E., Bythell, J.C., Guppy, R., Morris, N.J., Pearson, J.P., 2010. Coral mucus: The properties of its constituent mucins. Biomacromolecules. 11:883–8. DOI: https://doi.org/10.1021/bm9012106
Jeong, H.J., Yoo, Y. Du, Kang, N.S., Lim, A.S., Seong, K.A., Lee, S.Y., et al., 2012. Heterotrophic feeding as a newly identified survival strategy of the dinoflagellate Symbiodinium. Proc. Natl. Acad. Sci. U. S. A. 109:12604–9. DOI: https://doi.org/10.1073/pnas.1204302109
Jimnez-Guri, E., Okamura, B., Holland, P.W.H., 2007. Origin and evolution of a myxozoan worm. Integr. Comp. Biol. 47:752–8. DOI: https://doi.org/10.1093/icb/icm026
Kayal, E., Bentlage, B., Pankey, M.S., Ohdera, A.H., Medina, M., Plachetzki, D.C., et al., 2017. Comprehensive philogenomic analyses resolve cnidarian relationships and the origins of key organismal traits. PeerJ Preprints. 5:e3172v1 DOI: https://doi.org/10.7287/peerj.preprints.3172v1
Kayal, E., Bentlage, B., Pankey, M.S., Ohdera, A.H., Medina, M., Plachetzki, D.C., et al., 2018. Phylogenomics provides a robust topology of the major cnidarian lineages and insights on the origins of key organismal traits. BMC Evol. Biol. 18:1–18. DOI: https://doi.org/10.1186/s12862-018-1142-0
Kayal, E., Roure, B., Philippe, H., Collins, A.G., Lavrov, D. V, 2013. Cnidarian phylogenetic relationships as revealed by mitogenomics. BMC Evol. Biol. 13:1–18. DOI: https://doi.org/10.1186/1471-2148-13-5
Kelman, D., Kashman, Y., Rosenberg, E., Kushmaro, A., Loya, Y., 2006. Antimicrobial activity of Red Sea corals. Mar. Biol. 149:357–363. DOI: https://doi.org/10.1007/s00227-005-0218-8
Kennedy, J., Codling, C.E., Jones, B. V, Dobson, A.D.W., Marchesi, J.R., 2008. Diversity of microbes associated with the marine sponge, Haliclona simulans, isolated from Irish waters and identification of polyketide synthase genes from the sponge metagenome. Environ. Microbiol. 10:1888–902. DOI: https://doi.org/10.1111/j.1462-2920.2008.01614.x
Khalturin, K., Shinzato, C., Khalturina, M., Hamada, M., Fujie, M., Koyanagi, R., et al., 2019. Medusozoan genomes inform the evolution of the jellyfish body plan. Nat. Ecol. Evol. 3:811–22. DOI: https://doi.org/10.1038/s41559-019-0853-y
Kinchington, D., 1981. Organic-matrix synthesis by scleractinian coral larval and post-larval stages during skeletogenesis, in: Et Al (Eds) Proc 4th Int Coral Reef Symp. pp. 107–113.
Kramar, M.K., Tinta, T., Lučić, D., Malej, A., Turk, V., 2019. Bacteria associated with moon jellyfish during bloom and post-bloom periods in the Gulf of Trieste (northern Adriatic). PLoS One. 14:e0198056. DOI: https://doi.org/10.1371/journal.pone.0198056
Krediet, C.J., Ritchie, K.B., Paul, V.J., Teplitski, M., 2013. Coral-associated micro-organisms and their roles in promoting coral health and thwarting diseases. Proc. R. Soc. B Biol. Sci. 280:20122328. DOI: https://doi.org/10.1098/rspb.2012.2328
Krupp, D.A., 1984. Mucus production by corals exposed during an extreme low tide. Pacific Sci. 38:1–11.
Lai, S.K., Wang, Y.Y., Wirtz, D., Hanes, J., 2009. Micro- and macrorheology of mucus. Adv. Drug Deliv. Rev. 61:86–100. DOI: https://doi.org/10.1016/j.addr.2008.09.012
Lang, T., Hansson, G.C., Samuelsson, T., 2007. Gel-forming mucins appeared early in metazoan evolution. Proc. Natl. Acad. Sci. U. S. A. 104:16209–14. DOI: https://doi.org/10.1073/pnas.0705984104
Lang, T., Klasson, S., Larsson, E., Johansson, M.E.V., Hansson, G.C., Samuelsson, T., 2016. Searching the Evolutionary Origin of Epithelial Mucus Protein Components - Mucins and FCGBP. Mol. Biol. Evol. 33:1921–36. DOI: https://doi.org/10.1093/molbev/msw066
Lawson, C.A., Raina, J., Kahlke, T., Seymour, J.R., Suggett, D.J., 2018. Defining the core microbiome of the symbiotic dinoflagellate, Symbiodinium. Environ. Microbiol. Rep. 10:7–11. DOI: https://doi.org/10.1111/1758-2229.12599
Le Tissier, M.D.A.A., 1991. The nature of the skeleton and skeletogenic tissues in the Cnidaria, in: Hydrobiologia. Springer, Amsterdam, the Netherlands. p. 397–402. DOI: https://doi.org/10.1007/978-94-011-3240-4_57
Lebrato, M., Pitt, K.A., Sweetman, A.K., Jones, D.O.B., Cartes, J.E., Oschlies, A., et al., 2012. Jelly-falls historic and recent observations: A review to drive future research directions. Hydrobiologia. 690:227–45. DOI: https://doi.org/10.1007/s10750-012-1046-8
Lesser, M.P., 2004. Experimental biology of coral reef ecosystems. J. Exp. Mar. Bio. Ecol. 300:217–52. DOI: https://doi.org/10.1016/j.jembe.2003.12.027
Lewis, J.B., Price, W.S., 1975. Feeding mechanisms and feeding strategies of Atlantic reef corals. J. Zool. 176:527–44. DOI: https://doi.org/10.1111/j.1469-7998.1975.tb03219.x
Lilley, M.K.S., Elineau, A., Ferraris, M., Thiéry, A., Stemmann, L., Gorsky, G., Lombard, F., 2014. Individual shrinking to enhance population survival: Quantifying the reproductive and metabolic expenditures of a starving jellyfish, Pelagia noctiluca. J. Plankton Res. 36:1585–97. DOI: https://doi.org/10.1093/plankt/fbu079
Liu, W., Mo, F., Jiang, G., Liang, H., Ma, C., Li, T., et al., 2018. Stress-induced mucus secretion and its composition by a combination of proteomics and metabolomics of the jellyfish aurelia coerulea. Mar. Drugs. 16:341. DOI: https://doi.org/10.3390/md16090341
Lommel, M., Strompen, J., Hellewell, A.L., Balasubramanian, G.P., Christofidou, E.D., Thomson, A.R., et al., 2018. Hydra Mesoglea Proteome Identifies Thrombospondin as a Conserved Component Active in Head Organizer Restriction. Sci. Rep. 8:1–18. DOI: https://doi.org/10.1038/s41598-018-30035-2
Lubbock, R., 1980. Clone-specific cellular recognition in a sea anemone. Proc. Natl. Acad. Sci. 77:6667–9. DOI: https://doi.org/10.1073/pnas.77.11.6667
Lucas, C.H., Graham, W.M., Widmer, C., 2012. Jellyfish Life Histories: Role of Polyps in Forming and Maintaining Scyphomedusa Populations. Adv. Mar. Biol. 63:133–96. DOI: https://doi.org/10.1016/B978-0-12-394282-1.00003-X
Mall, A.S., 2008. Analysis of mucins: Role in laboratory diagnosis. J. Clin. Pathol. 61:1018–24. DOI: https://doi.org/10.1136/jcp.2008.058057
Marshall, A.T., Wright, O.P., 1993. Confocal laser scanning light microscopy of the extra-thecal epithelia of undecalcified scleractinian corals. Cell Tissue Res. 272:533–43. DOI: https://doi.org/10.1007/BF00318560
Marshall, A.T., Wright, O.P., 1991. Freeze‐substitution of scleractinian coral for confocal scanning laser microscopy and X‐ray microanalysis. J. Microsc. 162:341–54. DOI: https://doi.org/10.1111/j.1365-2818.1991.tb03145.x
Martorelli, S.R., 2001. Digenea parasites of jellyfish and ctenophores of the southern Atlantic. Hydrobiologia. 451:305–10. DOI: https://doi.org/10.1007/978-94-010-0722-1_25
Mayack, C., Naug, D., 2009. Energetic stress in the honeybee Apis mellifera from Nosema ceranae infection. J. Invertebr. Pathol. 100:185–8. DOI: https://doi.org/10.1016/j.jip.2008.12.001
Mayer, A.M.S., Rodríguez, A.D., Taglialatela-Scafati, O., Fusetani, N., 2013. Marine pharmacology in 2009–2011: Marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar. Drugs. 11:2510–73. DOI: https://doi.org/10.3390/md11072510
Mayer, F.W., Wild, C., 2010. Coral mucus release and following particle trapping contribute to rapid nutrient recycling in a Northern Red Sea fringing reef. Mar. Freshw. Res. 61:1006–14. DOI: https://doi.org/10.1071/MF09250
McCanch, N. V, McCanch, M., Bell, J., 1996. Fulmars feeding on jellyfish. Br. Birds 89:569.
McFadden, C.S., Van Ofwegen, L.P., Quattrini, A.M., 2022. Revisionary systematics of Octocorallia (Cnidaria: Anthozoa) guided by phylogenomics. Available from: https://ssbbulletin.org/index.php/bssb/article/view/8735 DOI: https://doi.org/10.18061/bssb.v1i3.8735
McGrath, E.C., Smith, D.J., Jompa, J., Bell, J.J., 2017. Adaptive mechanisms and physiological effects of suspended and settled sediment on barrel sponges. J. Exp. Mar. Bio. Ecol. 496:74–83. DOI: https://doi.org/10.1016/j.jembe.2017.07.013
Medzhitov, R., 2008. Origin and physiological roles of inflammation. Nature. 454:428–35. DOI: https://doi.org/10.1038/nature07201
Meikle, P., Richards, G.N., Yellowlees, D., 1988. Structural investigations on the mucus from six species of coral. Mar. Biol. 99:187–93. DOI: https://doi.org/10.1007/BF00391980
Milisenda, G., Rossi, S., Vizzini, S., Fuentes, V.L., Purcell, J.E., Tilves, U., Piraino, S., 2018. Seasonal variability of diet and trophic level of the gelatinous predator Pelagia noctiluca (Scyphozoa). Sci. Rep. 8:1–13. DOI: https://doi.org/10.1038/s41598-018-30474-x
Miller, D.J., Hemmrich, G., Ball, E.E., Hayward, D.C., Khalturin, K., Funayama, N., et al., 2007. The innate immune repertoire in Cnidaria - Ancestral complexity and stochastic gene loss. Genome Biol. 8:1–13. DOI: https://doi.org/10.1186/gb-2007-8-4-r59
Mitchell, R., Chet, I., 1975. Bacterial attack of corals in polluted seawater. Microb. Ecol. 2:227–33. DOI: https://doi.org/10.1007/BF02010442
Moss, A.G., Estes, A.M., Muellner, L.A., Morgan, D.D., 2001. Protistan epibionts of the ctenophore Mnemiopsis mccradyi Mayer, in: Hydrobiologia. 451:295–304. DOI: https://doi.org/10.1007/978-94-010-0722-1_24
Murphy, F., Quinn, B., 2018. The effects of microplastic on freshwater Hydra attenuata feeding, morphology & reproduction. Environ. Pollut. 234:487–94. DOI: https://doi.org/10.1016/j.envpol.2017.11.029
Murty, V.L.N., Sarosiek, J., Slomiany, A., Slomiany, B.L., 1984. Effect of lipids and proteins on the viscosity of gastric mucus glycoprotein. Biochem. Biophys. Res. Commun. 121:521–9. DOI: https://doi.org/10.1016/0006-291X(84)90213-4
Muscatine, L., Falkowski, P.G., Porter, J.W., Dubinsky, Z., 1984. Fate of photosynthetic fixed carbon in light-and shade-adapted colonies of the symbiotic coral Stylophora pistillata. Proc. R. Soc. London. Ser. B. Biol. Sci. 222:181–202. DOI: https://doi.org/10.1098/rspb.1984.0058
Muscatine, L., Porter, J.W., 1977. Reef Corals: Mutualistic Symbioses Adapted to Nutrient-Poor Environments. Bioscience. 27:454–60. DOI: https://doi.org/10.2307/1297526
Mydlarz, L.D., Fuess, L., Mann, W., Pinzón, J.H., Gochfeld, D.J., 2016. Cnidarian immunity: From genomes to phenomes, in: Goffredo, S., Dubinsky, Z. (Eds.), The Cnidaria, Past, Present and Future: The World of Medusa and Her Sisters. Springer International Publishing, Cham, Switzerland. p. 441–66. DOI: https://doi.org/10.1007/978-3-319-31305-4_28
Nagata, R.M., Morandini, A.C., 2018. Diet, prey selection, and individual feeding rates of the jellyfish Lychnorhiza lucerna (Scyphozoa, Rhizostomeae). Mar. Biol. 165:187. DOI: https://doi.org/10.1007/s00227-018-3445-5
Nakajima, R., Yoshida, T., Azman, B.A.R., Zaleha, K., Othman, B.H.R., Toda, T., 2009. In situ release of coral mucus by Acropora and its influence on the heterotrophic bacteria. Aquat. Ecol. 43:815–23. DOI: https://doi.org/10.1007/s10452-008-9210-y
Naumann, M.S., Mayr, C., Struck, U., Wild, C., 2010. Coral mucus stable isotope composition and labeling: experimental evidence for mucus uptake by epizoic acoelomorph worms. Mar. Biol. 157:2521–31. DOI: https://doi.org/10.1007/s00227-010-1516-3
Naumann, M.S., Richter, C., el-Zibdah, M., Wild, C., 2009. Coral mucus as an efficient trap for picoplanktonic cyanobacteria: implications for pelagic–benthic coupling in the reef ecosystem. Mar. Ecol. Prog. Ser. 385:65–76. DOI: https://doi.org/10.3354/meps08073
Naumann, M.S., Richter, C., Mott, C., el-Zibdah, M., Manasrah, R., Wild, C., 2012. Budget of coral-derived organic carbon in a fringing coral reef of the Gulf of Aqaba, Red Sea. J. Mar. Syst. 105:20–9. DOI: https://doi.org/10.1016/j.jmarsys.2012.05.007
Neff, J.M., Anderson, J.W., 1981. Response of marine animals to petroleum and specific petroleum hydrocarbons. J of Appl. Ecol. 19:674. DOI: https://doi.org/10.2307/2403504
Neudecker, S., 1981. Growth and survival of scleractinian corals exposed to thermal effluents at Guam, in: Proceedings of the 4th International Coral Reef Symposium. Available from: http://www.reefbase.org/pacific/pub_A0000000049.aspx
Niggl, W., Glas, M., Laforsch, C., Mayr, C., Wild, C., 2009. First evidence of coral bleaching stimulating organic matter release by reef corals. Proceedings of the 11th International Coral Reef Symposium. Available from: https://nsuworks.nova.edu/cgi/viewcontent.cgi?filename=185&article=1000&context=occ_icrs&type=additional
Novosolov, M., Yahalomi, D., Chang, E.S., Fiala, I., Cartwright, P., Huchon, D., 2022. The Phylogenetic Position of the Enigmatic, Polypodium hydriforme (Cnidaria, Polypodiozoa): Insights from Mitochondrial Genomes. Genome Biol. Evol. 14:evac112. DOI: https://doi.org/10.1093/gbe/evac112
Ocampo, I.D., Cadavid, L.F., 2015. Mechanisms of immune responses in Cnidarians. Acta Biológica Colomb. 20:5–11. DOI: https://doi.org/10.15446/abc.v20n2.46728
Ohdera, A.H., Abrams, M.J., Ames, C.L., Baker, D.M., Suescún-Bolívar, L.P., Collins, A.G., et al., 2018. Upside-down but headed in the right direction: review of the highly versatile Cassiopea xamachana system. Front. Ecol. Evol. 35. DOI: https://doi.org/10.3389/fevo.2018.00035
Okamura, B., Gruhl, A., Bartholomew, J.L., 2015. An introduction to myxozoan evolution, ecology and development, in: Myxozoan Evolution, Ecology and Development. Springer, Amsterdam, the Netherlands. p. 1–20. DOI: https://doi.org/10.1007/978-3-319-14753-6_1
Otero, M. del M., Numa, C., Bo, M., Orejas, C., Garrabou, J., Cerrano, C., et al., 2017. Overview of the conservation status of Mediterranean Anthozoa. Available from: https://portals.iucn.org/library/node/46713
Otero‐Gonzáiez, A.J., Magalhães, B.S., Garcia‐Villarino, M., López‐Abarrategui, C., Sousa, D.A., Dias, S.C., Franco, O.L., 2010. Antimicrobial peptides from marine invertebrates as a new frontier for microbial infection control. FASEB J. 24:1320–34. DOI: https://doi.org/10.1096/fj.09-143388
Pages, F., 2000. Biological associations between barnacles and jellyfish with emphasis on the ectoparasitism of alepas pacifica (lepadomorpha) on diplulmaris malayensis (scyphozoa). J. Nat. Hist. 34:2045–56. DOI: https://doi.org/10.1080/002229300750022349
Pagès, F., Corbera, J., Lindsay, D., 2007. Piggybacking pycnogonids and parasitic narcomedusae on Pandea rubra (Anthomedusae, Pandeidae). Plankt. Benthos Res. 2:83–90. DOI: https://doi.org/10.3800/pbr.2.83
Palardy, J.E., Rodrigues, L.J., Grottoli, A.G., 2008. The importance of zooplankton to the daily metabolic carbon requirements of healthy and bleached corals at two depths. J. Exp. Mar. Bio. Ecol. 367:180–8. DOI: https://doi.org/10.1016/j.jembe.2008.09.015
Palmer, C. V., Traylor-Knowles, N., 2012. Towards an integrated network of coral immune mechanisms. Proc. R. Soc. B Biol. Sci. 279:4106–14. DOI: https://doi.org/10.1098/rspb.2012.1477
Palmer, C. V., Mydlarz, L.D., Willis, B.L., 2008. Evidence of an inflammatory-like response in non-normally pigmented tissues of two scleractinian corals. Proc. R. Soc. B Biol. Sci. 275:2687–93. DOI: https://doi.org/10.1098/rspb.2008.0335
Palmer, C. V., Traylor-Knowles, N.G., 2018. Cnidaria: Anthozoans in the hot seat, in: Cooper, E.L. (Ed.), Advances in Comparative Immunology. Springer International Publishing, Cham, Switzerland. p. 51–93. DOI: https://doi.org/10.1007/978-3-319-76768-0_3
Parisi, M.G., Parrinello, D., Stabili, L., Cammarata, M., 2020. Cnidarian immunity and the repertoire of defense mechanisms in anthozoans. Biology (Basel). 11:283. DOI: https://doi.org/10.3390/biology9090283
Park, E., Hwang, D.S., Lee, J.S., Song, J.I., Seo, T.K., Won, Y.J., 2012. Estimation of divergence times in cnidarian evolution based on mitochondrial protein-coding genes and the fossil record. Mol. Phylogenet. Evol. 62:329–45. DOI: https://doi.org/10.1016/j.ympev.2011.10.008
Parker, H.J., Krumlauf, R., 2017. Segmental arithmetic: summing up the Hox gene regulatory network for hindbrain development in chordates. Wiley Interdiscip. Rev. Dev. Biol. 6:e286. DOI: https://doi.org/10.1002/wdev.286
Patton, W.K., 1994. Distribution and ecology of animals associated with branching corals (Acropora spp.) from the Great Barrier Reef, Australia. Bull. Mar. Sci. 55:193–211.
Patwa, A., Thiéry, A., Lombard, F., Lilley, M.K.S., Boisset, C., Bramard, J.F., et al., 2015. Accumulation of nanoparticles in “jellyfish” mucus: A bio-inspired route to decontamination of nano-waste. Sci. Rep. 5:11387. DOI: https://doi.org/10.1038/srep11387
Pauly, D., Graham, W., Libralato, S., Morissette, L., Deng Palomares, M.L., 2009. Jellyfish in ecosystems, online databases, and ecosystem models. Hydrobiologia. 616:67–85. DOI: https://doi.org/10.1007/s10750-008-9583-x
Pearson, R., Tellam, R., Xu, B., Zhao, Z., Willcox, M., Kongsuwan, K., 2011. Isolation, Biochemical Characterization and Anti-adhesion Property of Mucin from the Blue Blubber Jellyfish (Catostylus mosaicus). Available from: https://bioscipublisher.com/index.php/bm/article/view/165 DOI: https://doi.org/10.5376/bm.2011.02.0004
Perissinotto, R., Pakhomov, E.A., 1998. Contribution of salps to carbon flux of marginal ice zone of the Lazarev Sea, Southern Ocean. Mar. Biol. 131:25–32. DOI: https://doi.org/10.1007/s002270050292
Peters, E.C., Meyers, P.A., Yevich, P.P., Blake, N.J., 1981. Bioaccumulation and histopathological effects of oil on a stony coral. Mar. Pollut. Bull. 12:333–9. DOI: https://doi.org/10.1016/0025-326X(81)90106-5
Petralia, R.S., Mattson, M.P., Yao, P.J., 2014. Aging and longevity in the simplest animals and the quest for immortality. Ageing Res. Rev. 16:66–82. DOI: https://doi.org/10.1016/j.arr.2014.05.003
Piggot, A.M., Fouke, B.W., Sivaguru, M., Sanford, R.A., Gaskins, H.R., 2009. Change in zooxanthellae and mucocyte tissue density as an adaptive response to environmental stress by the coral, Montastraea annularis. Mar. Biol. 156:2379–89. DOI: https://doi.org/10.1007/s00227-009-1267-1
Pitt, K.A., Welsh, D.T., Condon, R.H., 2009. Influence of jellyfish blooms on carbon, nitrogen and phosphorus cycling and plankton production. Hydrobiologia. 616:133–49. DOI: https://doi.org/10.1007/s10750-008-9584-9
Porporato, E.M.D., Lo Giudice, A., Michaud, L., de Domenico, E., Spanò, N., 2013. Diversity and Antibacterial Activity of the Bacterial Communities Associated with Two Mediterranean Sea Pens, Pennatula phosphorea and Pteroeides spinosum (Anthozoa: Octocorallia). Microb. Ecol. 66:701–14. DOI: https://doi.org/10.1007/s00248-013-0260-x
Purcell, J.E., 1989. Predation on fish larvae and eggs by the hydromedusa Aequorea victoria at a herring spawning ground in British Columbia. Can. J. Fish. Aquat. Sci. 46:1415–27. DOI: https://doi.org/10.1139/f89-181
Purcell, J.E., 2005. Climate effects on formation of jellyfish and ctenophore blooms: A review. J. Mar. Biol. Assoc. 85:461–76. DOI: https://doi.org/10.1017/S0025315405011409
Purcell, J.E., 2012. Jellyfish and ctenophore blooms coincide with human proliferations and environmental perturbations. Ann. Rev. Mar. Sci. 4:209–35. DOI: https://doi.org/10.1146/annurev-marine-120709-142751
Purcell, J.E., Arai, M.N., 2001. Interactions of pelagic cnidarians and ctenophores with fish: A review. Hydrobiologia. 451:27–44. DOI: https://doi.org/10.1007/978-94-010-0722-1_4
Purcell, J.E., Clarkin, E., Doyle, T.K., 2012. Foods of Velella velella (Cnidaria: Hydrozoa) in algal rafts and its distribution in Irish seas. Hydrobiologia. 690:47–55. DOI: https://doi.org/10.1007/s10750-012-1052-x
Purcell, J.E., Sturdevant, M. V., 2001. Prey selection and dietary overlap among zooplanktivorous jellyfish and juvenile fishes in Prince William Sound, Alaska. Mar. Ecol. Prog. Ser. 210:67–83. DOI: https://doi.org/10.3354/meps210067
Ramondenc, S., Eveillard, D., Guidi, L., Lombard, F., Delahaye, B., 2020. Probabilistic modeling to estimate jellyfish ecophysiological properties and size distributions. Sci. Rep. 10:1–13. DOI: https://doi.org/10.1038/s41598-020-62357-5
Reshef, L., Koren, O., Loya, Y., Zilber‐Rosenberg, I., Rosenberg, E., 2006. The coral probiotic hypothesis. Environ. Microbiol. 8:2068–73. DOI: https://doi.org/10.1111/j.1462-2920.2006.01148.x
Reverter, M., Tapissier-Bontemps, N., Lecchini, D., Banaigs, B., Sasal, P., 2018. Biological and ecological roles of external fish mucus: A review. Fishes. 3:41. DOI: https://doi.org/10.3390/fishes3040041
Richardson, A.J., Bakun, A., Hays, G.C., Gibbons, M.J., 2009. The jellyfish joyride: causes, consequences and management responses to a more gelatinous future. Trends Ecol. Evol. 24:312–22. DOI: https://doi.org/10.1016/j.tree.2009.01.010
Riegl, B., Branch, G.M., 1995. Effects of sediment on the energy budgets of four scleractinian (Bourne 1900) and five alcyonacean (Lamouroux 1816) corals. J. Exp. Mar. Bio. Ecol. 186:259–75. DOI: https://doi.org/10.1016/0022-0981(94)00164-9
Rinkevich, B., Wolodarsky, Z., Loya, Y., 1991. Coral-crab association: a compact domain of a multilevel trophic system. Hydrobiologia. 216:279–84. DOI: https://doi.org/10.1007/978-94-011-3240-4_40
Ritchie, K.B., 2006. Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar. Ecol. Prog. Ser. 322:1–14. DOI: https://doi.org/10.3354/meps322001
Ritchie, K.B., Smith, G.W., 2004. Microbial communities of coral surface mucopolysaccharide layers. Coral Health and Disease. p. 259–64. DOI: https://doi.org/10.1007/978-3-662-06414-6_13
Rivera-Ortega, J., Thomé, P.E., 2018. Contrasting antibacterial capabilities of the surface mucus layer from three symbiotic cnidarians. Front. Mar. Sci. 5:392. DOI: https://doi.org/10.3389/fmars.2018.00392
Rodrigues, L.J., Grottoli, A.G., 2007. Energy reserves and metabolism as indicators of coral recovery from bleaching. Limnol. Oceanogr. 52:1874–82. DOI: https://doi.org/10.4319/lo.2007.52.5.1874
Rogers, C.S., 1990. Responses of coral reefs and reef organisms to sedimentation. Mar. Ecol. Prog. Ser. 62:185–202. DOI: https://doi.org/10.3354/meps062185
Rohwer, F., Breitbart, M., Jara, J., Azam, F., Knowlton, N., 2001. Diversity of bacteria associated with the Caribbean coral Montastraea franksi. Coral Reefs. 20:85–91. DOI: https://doi.org/10.1007/s003380100138
Romano, S.L., Palumbi, S.R., 1996. Evolution of scleractinian corals inferred from molecular systematics. Science. 271:640–2. DOI: https://doi.org/10.1126/science.271.5249.640
Rosenberg, E., Koren, O., Reshef, L., Efrony, R., Zilber-Rosenberg, I., 2007. The role of microorganisms in coral health, disease and evolution. Nat. Rev. Microbiol. 5:355–62. DOI: https://doi.org/10.1038/nrmicro1635
Rosenberg, E., Sharon, G., Zilber‐Rosenberg, I., 2009. The hologenome theory of evolution contains Lamarckian aspects within a Darwinian framework. Environ. Microbiol. 11:2959–62. DOI: https://doi.org/10.1111/j.1462-2920.2009.01995.x
Rosenberg, E., Zilber‐Rosenberg, I., 2011. Symbiosis and development: the hologenome concept. Birth Defects Res. Part C Embryo Today Rev. 93:56–66. DOI: https://doi.org/10.1002/bdrc.20196
Rossi, S., Ribes, M., Coma, R., Gili, J.M., 2004. Temporal variability in Zooplankton prey capture rate of the passive suspension feeder Leptogorgia sarmentosa (Cnidaria: Octocorallia), a case study. Mar. Biol. 144:89–99. DOI: https://doi.org/10.1007/s00227-003-1168-7
Rottini Sandrini, L., Avian, M., 1991. Reproduction of Pelagia noctiluca in the central and northern Adriatic Sea. Hydrobiologia. 216:197–202. DOI: https://doi.org/10.1007/978-94-011-3240-4_27
Rublee, P.A., Lasker, H.R., Gottfried, M., Roman, M.R., 1980. production and bacterial colonization of mucus from the soft coral Briarium asbestinum. Bull. Mar. Sci. 30:888–93.
Ruzicka, J., Brodeur, R.D., Cieciel, K., Decker, M.B., 2020. Examining the ecological role of jellyfish in the Eastern Bering Sea. ICES J. Mar. Sci. 77:791–802. DOI: https://doi.org/10.1093/icesjms/fsz244
Rypien, K.L., Ward, J.R., Azam, F., 2010. Antagonistic interactions among coral‐associated bacteria. Environ. Microbiol. 12:28–39. DOI: https://doi.org/10.1111/j.1462-2920.2009.02027.x
Sadd, B.M., Schmid-Hempel, P., 2009. Principles of ecological immunology. Evol. Appl. 2:113–21. DOI: https://doi.org/10.1111/j.1752-4571.2008.00057.x
Santos, G.S., Amaral, F.D., Sassi, C.F.C., Schwamborn, R., 2016. Response of the zooxanthellae of Palythoa caribaeorum (Cnidaria: Zoanthidea) to different environmental conditions in coastal and oceanic ecosystems of the Tropical Atlantic. Helgol. Mar. Res. 70:2. DOI: https://doi.org/10.1186/s10152-016-0454-y
Santos, M.E.A., Kitahara, M.V., Lindner, A., Reimer, J.D., 2016. Overview of the order Zoantharia (Cnidaria: Anthozoa) in Brazil. Mar. Biodivers. 46:547–59. DOI: https://doi.org/10.1007/s12526-015-0396-7
Sanz‐Martín, M., Pitt, K.A., Condon, R.H., Lucas, C.H., Novaes de Santana, C., Duarte, C.M., 2016. Flawed citation practices facilitate the unsubstantiated perception of a global trend toward increased jellyfish blooms. Glob. Ecol. Biogeogr. 25:1039–49. DOI: https://doi.org/10.1111/geb.12474
Savoca, S., Lo Giudice, A., Papale, M., Mangano, S., Caruso, C., Spanò, N., et al., 2019. Antarctic sponges from the Terra Nova Bay (Ross Sea) host a diversified bacterial community. Sci. Rep. 9:16135. DOI: https://doi.org/10.1038/s41598-019-52491-0
Schaub, J., Hunt, B.P. V, Pakhomov, E.A., Holmes, K., Lu, Y., Quayle, L., 2018. Using unmanned aerial vehicles (UAVs) to measure jellyfish aggregations. Mar. Ecol. Prog. Ser. 591:29–36. DOI: https://doi.org/10.3354/meps12414
Schöttner, S., Hoffmann, F., Wild, C., Rapp, H.T., Boetius, A., Ramette, A., 2009. Inter-and intra-habitat bacterial diversity associated with cold-water corals. ISME J. 3:756–9. DOI: https://doi.org/10.1038/ismej.2009.15
Schuhmacher, H., 1977. Ability in fungiid corals to overcome sedimentation. 3rd International Coral Reef Symposium. Available from: http://koha.ideam.gov.co/cgi-bin/koha/opac-detail.pl?biblionumber=4434457
Sebens, K.P., 1982. The limits to indeterminate growth: an optimal size model applied to passive suspension feeders. Ecology. 63:209–22. DOI: https://doi.org/10.2307/1937045
Shanks, A., Graham, W., 1988. Chemical defense in a scyphomedusa. Mar. Ecol. Prog. Ser. 45:81–6. DOI: https://doi.org/10.3354/meps045081
Sharp, K.H., Distel, D., Paul, V.J., 2012. Diversity and dynamics of bacterial communities in early life stages of the Caribbean coral Porites astreoides. ISME J. 6:790–801. DOI: https://doi.org/10.1038/ismej.2011.144
Sheldon, B.C., Verhulst, S., 1996. Ecological immunology: Costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol. Evol. 11:317–21. DOI: https://doi.org/10.1016/0169-5347(96)10039-2
Sheridan, C., Grosjean, P., Leblud, J., Palmer, C. V., Kushmaro, A., Eeckhaut, I., 2014. Sedimentation rapidly induces an immune response and depletes energy stores in a hard coral. Coral Reefs. 33:1067–76. DOI: https://doi.org/10.1007/s00338-014-1202-x
Shick, J.M., 1991. Energy metabolism and respiratory gas exchange, in: A Functional Biology of Sea Anemones. Springer, Amsterdam, the Netherlands. p. 119–173. DOI: https://doi.org/10.1007/978-94-011-3080-6_3
Shinzato, C., Shoguchi, E., Kawashima, T., Hamada, M., Hisata, K., Tanaka, M., et al., 2011. Using the Acropora digitifera genome to understand coral responses to environmental change. Nature. 476:320–3. DOI: https://doi.org/10.1038/nature10249
Shnit-Orland, M., Kushmaro, A., 2009. Coral mucus-associated bacteria: a possible first line of defense. FEMS Microbiol. Ecol. 67:371–80. DOI: https://doi.org/10.1111/j.1574-6941.2008.00644.x
Siddall, M.E., Martin, D.S., Bridge, D., Desser, S.S., Cone, D.K., 1995. The demise of a phylum of protists: Phylogeny of myxozoa and other parasitic cnidaria. J. Parasitol. 81:961–7. DOI: https://doi.org/10.2307/3284049
Siva‐Jothy, M.T., Thompson, J.J.W., 2002. Short‐term nutrient deprivation affects immune function. Physiol. Entomol. 27:206–12. DOI: https://doi.org/10.1046/j.1365-3032.2002.00286.x
Sleigh, M.A., 1989. Adaptations of ciliary systems for the propulsion of water and mucus. Comp. Biochem. Physiol. A. Comp. Physiol. 94:359–64. DOI: https://doi.org/10.1016/0300-9629(89)90559-8
Smith, V.J., Desbois, A.P., Dyrynda, E.A., 2010. Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Mar. Drugs. 8:1213-62. DOI: https://doi.org/10.3390/md8041213
Sokolow, S., 2009. Effects of a changing climate on the dynamics of coral infectious disease: a review of the evidence. Dis. Aquat. Organ. 87:5–18. DOI: https://doi.org/10.3354/dao02099
Sommer, U., Lengfellner, K., 2008. Climate change and the timing, magnitude, and composition of the phytoplankton spring bloom. Glob. Chang. Biol. 14:1199–208. DOI: https://doi.org/10.1111/j.1365-2486.2008.01571.x
Soetaert, K., Mohn, C., Rengstorf, A., Grehan, A., Van Oevelen, D., 2016. Ecosystem engineering creates a direct nutritional link between 600-m deep cold-water coral mounds and surface productivity. Sci. Rep. 6:35057. DOI: https://doi.org/10.1038/srep35057
Stabili, L., Rizzo, L., Basso, L., Marzano, M., Fosso, B., Pesole, G., Piraino, S., 2020. The Microbial Community Associated with Rhizostoma pulmo: Ecological Significance and Potential Consequences for Marine Organisms and Human Health. Mar. Drugs. 18:437. DOI: https://doi.org/10.3390/md18090437
Stabili, L., Schirosi, R., Parisi, M.G., Piraino, S., Cammarata, M., 2015. The mucus of Actinia equina (Anthozoa, Cnidaria): An unexplored resource for potential applicative purposes. Mar. Drugs. 13:5276–96. DOI: https://doi.org/10.3390/md13085276
Stafford-Smith, M.G., 1993. Sediment-rejection efficiency of 22 species of Australian scleractinian corals. Mar. Biol. 115:229–43. DOI: https://doi.org/10.1007/BF00346340
Stafford-Smith, M.G., Ormond, R.F.G., 1992. Sediment-rejection mechanisms of 42 species of Australian scleractinian corals. Mar. Freshw. Res. 43:683–705. DOI: https://doi.org/10.1071/MF9920683
Steinberg, D.K., Landry, M.R., 2017. Zooplankton and the ocean carbon cycle. Ann. Rev. Mar. Sci. 9:413–44. DOI: https://doi.org/10.1146/annurev-marine-010814-015924
Suchman, C.L., Daly, E.A., Keister, J.E., Peterson, W.T., Brodeur, R.D., 2008. Feeding patterns and predation potential of scyphomedusae in a highly productive upwelling region. Mar. Ecol. Prog. Ser. 358:161–72. DOI: https://doi.org/10.3354/meps07313
Tanaka, Y., Miyajima, T., Umezawa, Y., Hayashibara, T., Ogawa, H., Koike, I., 2009. Net release of dissolved organic matter by the scleractinian coral Acropora pulchra. J. Exp. Mar. Bio. Ecol. 377:101–6. DOI: https://doi.org/10.1016/j.jembe.2009.06.023
Tarrant, A.M., 2007. Hormonal signaling in cnidarians: Do we understand the pathways well enough to know whether they are being disrupted? Ecotoxicology. 16:5–13. DOI: https://doi.org/10.1007/s10646-006-0121-1
Technau, U., Steele, R.E., 2011. Evolutionary crossroads in developmental biology: Cnidaria. Development. 138:1447–58. DOI: https://doi.org/10.1242/dev.048959
Thompson, J.H., Shinn, E.A., Bright, T.J., 1980. Chapter 16 Effects of Drilling Mud on Seven Species of Reef-Building Corals as Measured in the Field and Laboratory. Elsevier Oceanogr. Ser. 27:433–53. DOI: https://doi.org/10.1016/S0422-9894(08)71393-X
Tinta, T., Klun, K., Herndl, G.J., 2021. The importance of jellyfish–microbe interactions for biogeochemical cycles in the ocean. Limnol. Oceanogr. 66:2011–32. DOI: https://doi.org/10.1002/lno.11741
Tinta, T., Kogovšek, T., Klun, K., Malej, A., Herndl, G.J., Turk, V., 2019. Jellyfish-associated microbiome in the marine environment: exploring its biotechnological potential. Mar. Drugs. 17:94. DOI: https://doi.org/10.3390/md17020094
Tinta, T., Kogovšek, T., Malej, A., Turk, V., 2012. Jellyfish modulate bacterial dynamic and community structure. PLoS One. 7:e39274. DOI: https://doi.org/10.1371/journal.pone.0039274
Tinta, T., Kogovšek, T., Turk, V., Shiganova, T.A., Mikaelyan, A.S., Malej, A., 2016. Microbial transformation of jellyfish organic matter affects the nitrogen cycle in the marine water column—A Black Sea case study. J. Exp. Mar. Bio. Ecol. 475:19–30. DOI: https://doi.org/10.1016/j.jembe.2015.10.018
Tinta, T., Malej, A., Kos, M., Turk, V., 2010. Degradation of the Adriatic medusa Aurelia sp. by ambient bacteria. Hydrobiologia. 645:179-91. DOI: https://doi.org/10.1007/s10750-010-0223-x
Titelman, J., Riemann, L., Sørnes, T.A., Nilsen, T., Griekspoor, P., Båmstedt, U., 2006. Turnover of dead jellyfish: Stimulation and retardation of microbial activity. Mar. Ecol. Prog. Ser. 325:43–58. DOI: https://doi.org/10.3354/meps325043
Tremblay, P., Naumann, M.S., Sikorski, S., Grover, R., Ferrier-Pagès, C., 2012. Experimental assessment of organic carbon fluxes in the scleractinian coral Stylophora pistillata during a thermal and photo stress event. Mar. Ecol. Prog. Ser. 453:63–77. DOI: https://doi.org/10.3354/meps09640
Turk, V., Fortič, A., Kramar, M.K., Žnidarič, M.T., Štrus, J., Kostanjšek, R., Malej, A., 2021. Observations on the surface structure of aurelia solida (Scyphozoa) polyps and medusae. Diversity. 13:244. DOI: https://doi.org/10.3390/d13060244
Vacelet, E., Thomassin, B.A., 1991. Microbial utilization of coral mucus in long term in situ incubation over a coral reef. Hydrobiologia. 211:19–32. DOI: https://doi.org/10.1007/BF00008613
Van Oppen, M.J.H., Gates, R.D., Blackall, L.L., Cantin, N., Chakravarti, L.J., Chan, W.Y., et al., 2017. Shifting paradigms in restoration of the world’s coral reefs. Glob. Chang. Biol. 23:3437–48. DOI: https://doi.org/10.1111/gcb.13647
Wagner, D., Luck, D.G., Toonen, R.J., 2012. The Biology and Ecology of Black Corals (Cnidaria: Anthozoa: Hexacorallia: Antipatharia). Adv. Mar. Biol. 63:67-132. DOI: https://doi.org/10.1016/B978-0-12-394282-1.00002-8
Wasserthal, L.T., Wasserthal, W., 1973. Ökologische bedeutung der schleimsekretion bei den planula-larven der hydroidengattung Eudendrium. Mar. Biol. 22:341–345. DOI: https://doi.org/10.1007/BF00391391
Weber, M., De Beer, D., Lott, C., Polerecky, L., Kohls, K., Abed, R.M.M., et al., 2012. Mechanisms of damage to corals exposed to sedimentation. Proc. Natl. Acad. Sci. U. S. A. 109:E1558–67. DOI: https://doi.org/10.1073/pnas.1100715109
Webster, N.S., Bourne, D., 2007. Bacterial community structure associated with the Antarctic soft coral, Alcyonium antarcticum. FEMS Microbiol. Ecol. 59:81–94. DOI: https://doi.org/10.1111/j.1574-6941.2006.00195.x
Weiland-Bräuer, N., Neulinger, S.C., Pinnow, N., Künzel, S., Baines, J.F., Schmitz, R.A., 2015. Composition of bacterial communities associated with Aurelia aurita changes with compartment, life stage, and population. Appl. Environ. Microbiol. 81:6038–52. DOI: https://doi.org/10.1128/AEM.01601-15
Weiland-Bräuer, N., Pinnow, N., Langfeldt, D., Roik, A., Güllert, S., Chibani, C.M., et al., 2020. The native microbiome is crucial for offspring generation and fitness of Aurelia aurita. MBio. 11:e02336-20. DOI: https://doi.org/10.1128/mBio.02336-20
Welsh, D.T., Dunn, R.J.K., Meziane, T., 2009. Oxygen and nutrient dynamics of the upside down jellyfish (cassiopea sp.) and its influence on benthic nutrient exchanges and primary production. Hydrobiologia. 635:351–62. DOI: https://doi.org/10.1007/s10750-009-9928-0
West, E.J., Pitt, K.A., Welsh, D.T., Koop, K., Rissik, D., 2009. Top‐down and bottom‐up influences of jellyfish on primary productivity and planktonic assemblages. Limnol. Oceanogr. 54:2058–71. DOI: https://doi.org/10.4319/lo.2009.54.6.2058
Wild, C., Huettel, M., Klueter, A., Kremb, S.G., Rasheed, M.Y.M., Jørgensen, B.B., 2004. Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature. 428:66–70. DOI: https://doi.org/10.1038/nature02344
Wild, C., Laforsch, C., Huettel, M., 2006. Detection and enumeration of microbial cells within highly porous calcareous reef sands. Mar. Freshw. Res. 57:415–20. DOI: https://doi.org/10.1071/MF05205
Wild, C., Naumann, M., Niggl, W., Haas, A., 2010. Carbohydrate composition of mucus released by scleractinian warm-and cold-water reef corals. Aquat. Biol. 10:41–5. DOI: https://doi.org/10.3354/ab00269
Wild, C., Woyt, H., Huettel, M., 2005. Influence of coral mucus on nutrient fluxes in carbonate sands. Mar. Ecol. Prog. Ser. 287:87–98. DOI: https://doi.org/10.3354/meps287087
Wolenski, F.S., Chandani, S., Stefanik, D.J., Jiang, N., Chu, E., Finnerty, J.R., Gilmore, T.D., 2011. Two polymorphic residues account for the differences in dna binding and transcriptional activation by nf-jb proteins encoded by naturally occurring alleles in nematostella vectensis. J. Mol. Evol. 73:325–36. DOI: https://doi.org/10.1007/s00239-011-9479-7
Wooldridge, S.A., 2009. A new conceptual model for the enhanced release of mucus in symbiotic reef corals during “bleaching” conditions. Mar. Ecol. Prog. Ser. 396:145–52. DOI: https://doi.org/10.3354/meps08310
Wooldridge, S.A., 2017. Instability and breakdown of the coral–algae symbiosis upon exceedence of the interglacial pCO2 threshold (>260 ppmv): The “missing” Earth-System feedback mechanism. Coral Reefs. 36:1025–37. DOI: https://doi.org/10.1007/s00338-017-1594-5
Work, T., Meteyer, C., 2014. To understand coral disease, look at coral cells. Ecohealth. 11:610–18. DOI: https://doi.org/10.1007/s10393-014-0931-1
Yonge, C.M., 1930. Studies on the Physiology of Corals IV. The Structure Distribution and Physiology of the Zooxanthellae. Available from: https://archive.org/details/biostor-175049
Zamzow, J.P., 2007. Ultraviolet-absorbing compounds in the mucus of shallow-dwelling tropical reef fishes correlate with environmental water clarity. Mar. Ecol. Prog. Ser. 343:263–271. DOI: https://doi.org/10.3354/meps06890
Zapata, F., Goetz, F.E., Smith, S.A., Howison, M., Siebert, S., Church, S.H., et al., 2015. Phylogenomic analyses support traditional relationships within Cnidaria. PLoS One. 10:e0139068. DOI: https://doi.org/10.1371/journal.pone.0139068
Zhao, Y., Parry, L.A., Vinther, J., Dunn, F.S., Li, Y., Wei, F., 2021. An early Cambrian polyp reveals an anemone-like ancestor for medusozoan cnidarians. Available from: https://www.biorxiv.org/content/10.1101/2021.12.24.474121v1 DOI: https://doi.org/10.1101/2021.12.24.474121

How to Cite

Savoca, S., Di Fresco, D., Alesci, A., Capillo, G., & Spanò, N. (2022). Mucus secretions in Cnidarian, an ecological, adaptive and evolutive tool. Advances in Oceanography and Limnology, 13(2). https://doi.org/10.4081/aiol.2022.11054