Mucus secretions in Cnidarian, an ecological, adaptive and evolutive tool

Submitted: 3 December 2022
Accepted: 25 January 2023
Published: 29 December 2022
Abstract Views: 1135
PDF: 304
HTML: 243
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.


Mucus secretion provides an interface with unique and multifunctional properties between the epithelial cells of many aquatic organisms and their surrounding environment. Indeed, mucus is involved in various essential biological processes including feeding, reproduction, osmoregulation, competition for space, defense against pathogens, xenobiotics, and a multitude of environmental stressors. The ability to produce a functional mucus layer is an important evolutionary step, arising first in Cnidaria that allowed for the development of the mucus-lined digestive cavity seen in higher metazoans. Mucus secretion by cnidarians has been moderately investigated in both corals and jellyfish, which among cnidarians are the ones that have shown the highest secretion rates to date. However, although in corals the production of mucus has received more attention, especially in view of the important ecological role played in coral reefs, in medusozoans the topic is little considered. Although the mucus secreted by corals has innumerable and important immunological, nutritional, and protective responsibilities, it should be remembered that jellyfish too represent a fundamental component of marine trophic web, playing numerous and important roles that are still unclear today. What is certain is that jellyfish are characterized (especially in the era of climate change) by large fluctuations in population density, the ecological implications of which are poorly understood. However, in both cases (Medusozoans and Anthozoans) to date some aspects relating to mucous secretions seem completely obscure, such as the microbiome and its variations as a function of environmental conditions or ontogenetic development, its implications in the field of immunological ecology, the consequent energy costs and finally the role played by the mucus in evolutionary terms. This review summarizes the properties, functions, ecological implications and evolutionary importance of mucus, in cnidarians, mainly focusing its roles in corals and jellyfish. Understanding these aspects relating to the ecological and evolutionary importance played by mucus is of fundamental importance for the ecosystems functioning.

Aglieri, G., Papetti, C., Zane, L., Milisenda, G., Boero, F., Piraino, S., 2014. First evidence of inbreeding, relatedness and chaotic genetic patchiness in the holoplanktonic jellyfish Pelagia noctiluca (Scyphozoa, Cnidaria). PLoS One. 9:e99647. DOI:

Ainsworth, T.D., Thurber, R.V., Gates, R.D., 2010. The future of coral reefs: a microbial perspective. Trends Ecol. Evol. 25:233–40. DOI:

Albano, M., Panarello, G., Di Paola, D., D’Angelo, G., Granata, A., Savoca, S., Capillo, G., 2021. The mauve stinger Pelagia noctiluca (Cnidaria, Scyphozoa) plastics contamination, the Strait of Messina case. Int. J. Environ. Stud. 78:977–82. DOI:

Alesci, A., Pergolizzi, S., Savoca, S., Fumia, A., Mangano, A., Albano, M., et al., 2022. Detecting Intestinal Goblet Cells of the Broadgilled Hagfish Eptatretus cirrhatus (Forster, 1801): A Confocal Microscopy Evaluation. Biology (Basel). 11:151–62. DOI:

Allers, E., Niesner, C., Wild, C., Pernthaler, J., 2008. Microbes enriched in seawater after addition of coral mucus. Appl. Environ. Microbiol. 74:3274–8. DOI:

Ames, C.L., Klompen, A.M.L., Badhiwala, K., Muffett, K., Reft, A.J., Kumar, M., et al., 2020. Cassiosomes are stinging-cell structures in the mucus of the upside-down jellyfish Cassiopea xamachana. Commun. 3:67. DOI:

Aneiros, A., Garateix, A., 2004. Bioactive peptides from marine sources: Pharmacological properties and isolation procedures. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 803:41–53. DOI:

Angiolillo, M., La Mesa, G., Giusti, M., Salvati, E., Di Lorenzo, B., Rossi, L., et al., 2021. New records of scleractinian cold-water coral (CWC) assemblages in the southern Tyrrhenian Sea (western Mediterranean Sea): Human impacts and conservation prospects. Prog. Oceanogr. 197:102656. DOI:

Anthony, K.R.N., Hoogenboom, M.O., Maynard, J.A., Grottoli, A.G., Middlebrook, R., 2009. Energetics approach to predicting mortality risk from environmental stress: a case study of coral bleaching. Funct. Ecol. 23:539–50. DOI:

Apprill, A., 2017. Marine animal microbiomes: toward understanding host–microbiome interactions in a changing ocean. Front. Mar. Sci. 4:222. DOI:

Arai, M.N., 1988. Interactions of fish and pelagic coelenterates. Can. J. Zool. 66:1913–27. DOI:

Arai, M.N., 1996. A Functional Biology of Scyphozoa, A Functional Biology of Scyphozoa. Springer Science & Business Media, Amsterdam, The Netherlands. 316 pp. DOI:

Arai, M.N., 2005. Predation on pelagic coelenterates: A review. J. Mar. Biol. Assoc. United Kingdom. 85:523-36. DOI:

Arai, M.N., Welch, D.W., Dunsmuir, A.L., Jacobs, M.C., Ladouceur, A.R., 2003. Digestion of pelagic Ctenophora and Cnidaria by fish. Can. J. Fish. Aquat. Sci. 60:825–9. DOI:

Aranda, M., Li, Y., Liew, Y.J., Baumgarten, S., Simakov, O., Wilson, M.C., et al., 2016. Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Sci. Rep. 6:1–15. DOI:

Armitage, S.A.O., Thompson, J.J.W., Rolff, J., Siva‐Jothy, M.T., 2003. Examining costs of induced and constitutive immune investment in Tenebrio molitor. J. Evol. Biol. 16:1038–44. DOI:

Augustin, R., Bosch, T.C.G., 2010. Cnidarian immunity: A tale of two barriers. Adv. Exp. Med. Biol. 708:1–16. DOI:

Avent, S.R., Bollens, S.M., Butler, M., Horgan, E., Rountree, R., 2001. Planktonic hydroids on Georges Bank: Ingestion and selection by predatory fishes. Deep. Res. Part II Top. Stud. Oceanogr. 48:673–84. DOI:

Baier, R.E., Gucinski, H., Meenaghan, M.A., Wirth, J., Glantz, P.Q., 1985. Biophysical studies of mucosal surfaces. Oral interfacial React. bone, soft tissue saliva.

Bak, R.P.M., Elgershuizen, J.H.B.W., 1976. Patterns of Oil-Sediment rejection in corals. Mar. Biol. 37:105–13. DOI:

Baker, D.M., Freeman, C.J., Wong, J.C.Y., Fogel, M.L., Knowlton, N., 2018. Climate change promotes parasitism in a coral symbiosis. ISME J. 12:921–30. DOI:

Bakshani, C.R., Morales-Garcia, A.L., Althaus, M., Wilcox, M.D., Pearson, J.P., Bythell, J.C., Burgess, J.G., 2018. Evolutionary conservation of the antimicrobial function of mucus: A first defence against infection. Biofilms Microbiomes 4:1–12. DOI:

Bansil, R., Turner, B.S., 2006. Mucin structure, aggregation, physiological functions and biomedical applications. Curr. Opin. Colloid Interface Sci. 11:164–70. DOI:

Barboza, L.G.A., Dick Vethaak, A., Lavorante, B.R.B.O., Lundebye, A.K., Guilhermino, L., 2018. Marine microplastic debris: An emerging issue for food security, food safety and human health. Mar. Pollut. Bull. 133:336-48. DOI:

Basso, L., Rizzo, L., Marzano, M., Intranuovo, M., Fosso, B., Pesole, G., et al., 2019. Jellyfish summer outbreaks as bacterial vectors and potential hazards for marine animals and humans health? The case of Rhizostoma pulmo (Scyphozoa, Cnidaria). Sci. Total Environ. 692:305–18. DOI:

Bastidas, C., Garcia, E.M., 2004. Sublethal effects of mercury and its distribution in the coral Porites astreoides. Mar. Ecol. Prog. Ser. 267:133–43. DOI:

Bavington, C.D., Lever, R., Mulloy, B., Grundy, M.M., Page, C.P., Richardson, N. V., McKenzie, J.D., 2004. Anti-adhesive glycoproteins in echinoderm mucus secretions. Comp. Biochem. Physiol. - B Biochem. Mol. Biol. 139:607–17. DOI:

Bednarz, V.N., Grover, R., Maguer, J.-F., Fine, M., Ferrier-Pagès, C., 2017. The assimilation of diazotroph-derived nitrogen by scleractinian corals depends on their metabolic status. MBio 8:e02058-16. DOI:

Benson, A.A., Muscatine, L., 1974. Wax in coral mucus: energy transfer from corals to reef fishes 1. Limnol. Oceanogr. 19:810–4. DOI:

Bessel-Browne, P., Negri, A.P., Fisher, R., Clode, P.L., Jones, R., 2017. Impacts of light limitation on corals and crustose coralline algae. Sci Rep. 7:11553. DOI:

Beutler, B., 2004. Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430:257–63. DOI:

Biggerstaff, A., Smith, D.J., Jompa, J., Bell, J.J., 2017. Metabolic responses of a phototrophic sponge to sedimentation supports transitions to sponge-dominated reefs. Sci. Rep. 7:2725. DOI:

Blanchet, M., Pringault, O., Bouvy, M., Catala, P., Oriol, L., Caparros, J., et al., 2015. Changes in bacterial community metabolism and composition during the degradation of dissolved organic matter from the jellyfish Aurelia aurita in a Mediterranean coastal lagoon. Environ. Sci. Pollut. Res. 22:13638–53. DOI:

Bongaerts, P., Hoeksema, B.W., Hay, K.B., Hoegh-Guldberg, O., 2012. Mushroom corals overcome live burial through pulsed inflation. Coral Reefs 31:399. DOI:

Bourne, D.G., Garren, M., Work, T.M., Rosenberg, E., Smith, G.W., Harvell, C.D., 2009. Microbial disease and the coral holobiont. Trends Microbiol. 17:554–62. DOI:

Bourne, D.G., Morrow, K.M., Webster, N.S., 2016. Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Annu Rev Microbiol 70:317–40. DOI:

Branch, G.M., 1981. The biology of limpets: Physical factors, energy flow, and ecological interactions. Oceanogr. Mar. Biol. Annu. Rev. 19:235–380.

Brandt, M.E., McManus, J.W., 2009. Dynamics and impact of the coral disease white plague: Insights from a simulation model. Dis. Aquat. Organ. 87:117–33. DOI:

Brotz, L., Cheung, W.W.L., Kleisner, K., Pakhomov, E., Pauly, D., 2012. Increasing jellyfish populations: Trends in Large Marine Ecosystems, in: Hydrobiologia. Springer, Amsterdam, the Netherlands. p. 3–20. DOI:

Brown, B.E., Bythell, J.C., 2005. Perspectives on mucus secretion in reef corals. Mar. Ecol. Prog. Ser. 296:291–309. DOI:

Brown, B.E., Howard, L.S., 1985. Assessing the Effects of “Stress” on Reef Corals. Adv. Mar. Biol. 22:1–63. DOI:

Bruno, C., Blasi, M.F., Mattei, D., Martellone, L., Brancaleone, E., Savoca, S., Favero, G., 2022. Polymer composition analysis of plastic debris ingested by loggerhead turtles (Caretta caretta) in Southern Tyrrhenian Sea through ATR-FTIR spectroscopy. Mar. Environ. Res. 179:105676. DOI:

Bythell, J.C., Wild, C., 2011. Biology and ecology of coral mucus release. J. Exp. Mar. Bio. Ecol. 408:88–93. DOI:

Cabillon, N.A.R., Lazado, C.C., 2019. Mucosal barrier functions of fish under changing environmental conditions. Fishes. 4:2. DOI:

Calow, P., 1979. Why some metazoan mucus secretions are more susceptible to microbial attack than others. Am. Nat. 114:149–52. DOI:

Camacho-Pacheco, A.V., Gómez-Salinas, L.C., Cisneros-Mata, M.Á., Rodríguez-Félix, D., Díaz-Tenorio, L.M., Unzueta-Bustamante, M.L., 2022. Feeding Behavior, Shrinking, and the Role of Mucus in the Cannonball Jellyfish Stomolophus sp. 2 in Captivity. Diversity. 14:103. DOI:

Canepa, A., Fuentes, V., Sabatés, A., Piraino, S., Boero, F., Gili, J.M., 2014. Pelagia noctiluca in the mediterranean sea, in: Jellyfish Blooms. p. 237–66. DOI:

Cardona, L., Álvarez de Quevedo, I., Borrell, A., Aguilar, A., 2012. Massive consumption of gelatinous plankton by Mediterranean apex predators. PLoS One 7:e31329. DOI:

Cates, N., 1975. Productivity and organic consumption in Cassiopea and Condylactus. J. Exp. Mar. Bio. Ecol. 18:55–9. DOI:

Celli, J., Gregor, B., Turner, B., Afdhal, N.H., Bansil, R., Erramilli, S., 2005. Viscoelastic properties and dynamics of porcine gastric mucin. Biomacromolecules 6:1329–33. DOI:

Chang, E.S., Neuhof, M., Rubinstein, N.D., Diamant, A., Philippe, H., Huchon, D., Cartwright, P., 2015. Genomic insights into the evolutionary origin of Myxozoa within Cnidaria. Proc. Natl. Acad. Sci. U. S. A. 112:14912–7. DOI:

Clarke, J.L., Davey, P.A., Aldred, N., Aldred, N., 2020. Sea anemones (Exaiptasia pallida) use a secreted adhesive and complex pedal disc morphology for surface attachment. BMC Zool. 5:1–13. DOI:

Coffroth, M.A., 1990. Mucous sheet formation on poritid corals: An evaluation of coral mucus as a nutrient source on reefs. Mar. Biol. 105:39–49. DOI:

Coffroth, M.A., Lasker, H.R., Diamond, M.E., Bruenn, J.A., Bermingham, E., 1992. DNA fingerprints of a gorgonian coral: a method for detecting clonal structure in a vegetative species. Mar. Biol. 114:317–25. DOI:

Collins, A.G., 2009. Recent Insights into Cnidarian Phylogeny. Smithsonian. Contributions to Marine Sciences. 38:139–49.

Condon, P., Desbordes, G., Miller, W.B., DeSteno, D., 2013. Meditation Increases Compassionate Responses to Suffering. Psychol. Sci. 24, 2125–2127. DOI:

Condon, R.H., Graham, W.M., Duarte, C.M., Pitt, K.A., Lucas, C.H., Haddock, S.H.D., et al., 2012. Questioning the rise of gelatinous Zooplankton in the world’s oceans. Bioscience 62:160–9. DOI:

Condon, R.H., Steinberg, D.K., Del Giorgio, P.A., Bouvier, T.C., Bronk, D.A., Graham, W.M., Ducklow, H.W., 2011. Jellyfish blooms result in a major microbial respiratory sink of carbon in marine systems. Proc. Natl. Acad. Sci. U. S. A. 108:10225–30. DOI:

Cone, R.A., 2009. Barrier properties of mucus. Adv. Drug Deliv. Rev. 61:75–85. DOI:

Cooney, R.P., Pantos, O., Le Tissier, M.D.A., Barer, M.R., O’Donnell, A.G., Bythell, J.C., 2002. Characterization of the bacterial consortium associated with black band disease in coral using molecular microbiological techniques. Environ. Microbiol. 4:401–13. DOI:

Costa, E., Gambardella, C., Piazza, V., Vassalli, M., Sbrana, F., Lavorano, S., et al., 2020. Microplastics ingestion in the ephyra stage of Aurelia sp. triggers acute and behavioral responses. Ecotoxicol. Environ. Saf. 189:109983. DOI:

Costa, R., Capillo, G., Albergamo, A., Volsi, R.L., Bartolomeo, G., Bua, G., et al., 2019. A multi-screening evaluation of the nutritional and nutraceutical potential of the mediterranean jellyfish pelagia noctiluca. Mar. Drugs 17:172. DOI:

Crossland, C.J., 1987. In situ release of mucus and DOC-lipid from the corals Acropora variabilis and Stylophora pistillata in different light regimes. Coral Reefs 6:35–42. DOI:

Crossland, C.J., Barnes, D.J., Borowitzka, M.A., 1980. Diurnal lipid and mucus production in the staghorn coral Acropora acuminata. Mar. Biol. 60:81–90. DOI:

D’Ambra, I., Merquiol, L., Graham, W.M., Costello, J.H., 2021. “Indirect development” increases reproductive plasticity and contributes to the success of scyphozoan jellyfish in the oceans. Sci. Rep. 11:1–8. DOI:

Dallmeyer, D.G., Porter, J.W., Smith, G.J., 1982. Effects of particulate peat on the behavior and physiology of the Jamaican reef-building coral Montastrea annularis. Mar. Biol. 68:229–33. DOI:

Daly, M., Brugler, M.R., Cartwright, P., Collins, A.G., Dawson, M.N., Fautin, D.G., et al., 2007. The phylum Cnidaria: A review of phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa. 1668:127–82. DOI:

Davies, J.M., Viney, C., 1998. Water-mucin phases: Conditions for mucus liquid crystallinity. Thermochim. Acta. 315:39–49. DOI:

Davies, P.S., 1984. The role of zooxanthellae in the nutritional energy requirements of Pocillopora eydouxi. Coral Reefs. 2:181–6.

Davy, S.K., Allemand, D., Weis, V.M., 2012. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 76:229–61. DOI:

Davy, J.E., Patten, N.L., 2007. Morphological diversity of virus-like particles within the surface microlayer of scleractinian corals. Aquat. Microb. Ecol. 47:37–44. DOI:

de Oliveira Soares, M., Matos, E., Lucas, C., Rizzo, L., Allcock, L., Rossi, S., 2020. Microplastics in corals: An emergent threat. Mar. Pollut. Bull. 161:111810. DOI:

Deason, E.E., Smayda, T.J., 1982. Ctenophore-zooplankton-phytoplankton interactions in Narragansett Bay, Rhode Island, USA, during 1972-1977. J. Plankton Res. 4:203–17. DOI:

Decker, M.B., Robinson, K.L., Dorji, S., Cieciel, K.D., Barceló, C., Ruzicka, J.J., Brodeur, R.D., 2018. Jellyfish and forage fish spatial overlap on the eastern Bering Sea shelf during periods of high and low jellyfish biomass. Mar. Ecol. Prog. Ser. 591:57–69. DOI:

Devereux, R., Hartl, M.G.J., Bell, M., Capper, A., 2021. The abundance of microplastics in cnidaria and ctenophora in the North Sea. Mar. Pollut. Bull. 173:112992. DOI:

Disalvo, L.H., 2021. 12 Ingestion and Assimilation of Bacteria by Two Scleractinian Coral Species. Exp. Coelenterate Biol. Available from:

Doyle, T.K., Hays, G.C., Harrod, C., Houghton, J.D.R., 2014. Ecological and societal benefits of jellyfish, in: Pitt, K.A., Lucas, C.H. (Eds.), Jellyfish Blooms. Springer Dordrecht, Netherlands. p. 105–127. DOI:

Doyle, T.K., Houghton, J.D.R., McDevitt, R., Davenport, J., Hays, G.C., 2007. The energy density of jellyfish: Estimates from bomb-calorimetry and proximate-composition. J. Exp. Mar. Bio. Ecol. 343:239–52. DOI:

Ducklow, H.W., Mitchell, R., 1979. Bacterial populations and adaptations in the mucus layers on living corals 1. Limnol. Oceanogr. 24:715–25. DOI:

Ducklow, H.W., Mitchell, R., 1991. Composition of mucus released by coral reef coelenterates. Limnol. Oceanogr. 24:706–14. DOI:

Duerden, J.E., 1906. XXXIV.—The morphology of the Madreporaria.—VIII. The primary septa of the Rugosa. J. Nat. Hist. 18:226–42. DOI:

Edmunds, P.J., Davies, P.S., 1989. An energy budget for Porites porites (Scleractinia), growing in a stressed environment. Coral Reefs 8:37–43. DOI:

Evans, N.M., Lindner, A., Raikova, E. V., Collins, A.G., Cartwright, P., 2008. Phylogenetic placement of the enigmatic parasite, Polypodium hydriforme, within the Phylum Cnidaria. BMC Evol. Biol. 8:1–12. DOI:

Ferrier-Pagès, C., Peirano, A., Abbate, M., Cocito, S., Negri, A., Rottier, C., et al., 2011. Summer autotrophy and winter heterotrophy in the temperate symbiotic coral Cladocora caespitosa. Limnol. Oceanogr. 56:1429–38. DOI:

Ferrier-Pagès, C., Gattuso, J.P., Cauwet, G., Jaubert, J., Allemand, D., 1998. Release of dissolved organic carbon and nitrogen by the zooxanthellate coral Galaxea fascicularis. Mar. Ecol. Prog. Ser. 172:265–74. DOI:

Finnerty, J.R., Pang, K., Burton, P., Paulson, D., Martindale, M.Q., 2004. Origins of bilateral symmetry: Hox and dpp expression in a sea anemone. Science. 304:1335–7. DOI:

Fransolet, D., Herman, A.-C., Roberty, S., Plumier, J.-C., 2012. Increased number of mucocytes in Aiptasia pallida following bleaching. 12th International Coral Reef Symposium. Available from:

Fransolet, D., Roberty, S., Herman, A.C., Tonk, L., Hoegh-Guldberg, O., Plumier, J.C., 2013. Increased Cell Proliferation and Mucocyte Density in the Sea Anemone Aiptasia pallida Recovering from Bleaching. PLoS One 8:e65015. DOI:

Frias-Lopez, J., Zerkle, A.L., Bonheyo, G.T., Fouke, B.W., 2002. Partitioning of bacterial communities between seawater and healthy, black band diseased, and dead coral surfaces. Appl. Environ. Microbiol. 68:2214–28. DOI:

Futch, J.C., Griffin, D.W., Lipp, E.K., 2010. Human enteric viruses in groundwater indicate offshore transport of human sewage to coral reefs of the Upper Florida Keys. Environ. Microbiol. 12:964–74. DOI:

Goffredo, S., Dubinsky, Z., (Eds.), 2016. The Cnidaria, past, present and future: The world of medusa and her sisters. Springer, Amsterdam, The Netherlands. 855 pp. DOI:

Goldberg, W.M., 2002. Feeding behavior, epidermal structure and mucus cytochemistry of the scleractinian Mycetophyllia reesi, a coral without tentacles. Tissue Cell. 34:232–45. DOI:

Goldberg, W.M., 2018. Coral food, feeding, nutrition, and secretion: a review. Mar. Org. as Model Syst. Results and Problems in Cell Differentiation. 65:377–421. DOI:

Gottfried, M., Roman, M.R., 1983. Ingestion and incorporation of coral-mucus detritus by reef zooplankton. Mar. Biol. 72:211–8. DOI:

Graham, W.M., Gelcich, S., Robinson, K.L., Duarte, C.M., Brotz, L., Purcell, J.E., et al., 2014. Linking human well‐being and jellyfish: ecosystem services, impacts, and societal responses. Front. Ecol. Environ. 12:515–23. DOI:

Grange, K.R., 1991. Mutualism between the antipatharian Antipathes fiordensis and the ophiuroid Astrobrachion constrictum in New Zealand fjords, in: Hydrobiologia. Springer, Amsterdam, the Netherlands. p. 297–303. DOI:

Griffiths, R.J., 1977. Thermal stress and the biology of Actinia equina L. (Anthozoa). J. Exp. Mar. Bio. Ecol. 27:141–54. DOI:

Grottoli, A.G., Rodrigues, L.J., Palardy, J.E., 2006. Heterotrophic plasticity and resilience in bleached corals. Nature. 440:1186–9. DOI:

Grover, R., Ferrier-Pagès, C., Maguer, J.-F., Ezzat, L., Fine, M., 2014. Nitrogen fixation in the mucus of Red Sea corals. J. Exp. Biol. 217:3962–3. DOI:

Haas, A.F., Naumann, M.S., Struck, U., Mayr, C., el-Zibdah, M., Wild, C., 2010. Organic matter release by coral reef associated benthic algae in the Northern Red Sea. J. Exp. Mar. Bio. Ecol. 389:53–60. DOI:

Hadaidi, G., Gegner, H.M., Ziegler, M., Voolstra, C.R., 2019. Carbohydrate composition of mucus from scleractinian corals from the central Red Sea. Coral Reefs 38:21–7. DOI:

Haeckel, E., 1880. Essais de psychologie cellulaire. Baillière, Paris, France. 206 pp.

Hamilton, L.C., 2016. Where is the North Pole? An election-year survey on global change. Available from: DOI:

Hanaoka, K., Ohno, H., Wada, N., Ueno, S., Goessler, W., Kuehnelt, D., et al., 2001. Occurrence of organo-arsenicals in jellyfishes and their mucus. Chemosphere. 44:743–9. DOI:

Hansson, L.J., Norrman, B., 1995. Release of dissolved organic carbon (DOC) by the scyphozoan jellyfish Aurelia aurita and its potential influence on the production of planktic bacteria. Mar. Biol. 121:527–32. DOI:

Hatcher, B.G., 1988. Coral reef primary productivity: a beggar’s banquet. Trends Ecol. Evol. 3:106-11. DOI:

Heaslip, S.G., Iverson, S.J., Bowen, W.D., James, M.C., 2012. Jellyfish support high energy intake of leatherback sea turtles (Dermochelys coriacea): video evidence from animal-borne cameras. PLoS One. 7:e33259. DOI:

Houghton, J.D.R., Doyle, T.K., Wilson, M.W., Davenport, J., Hays, G.C., 2006. Jellyfish aggregations and leatherback turtle foraging patterns in a temperate coastal environment. Ecology. 87:1967–72. DOI:[1967:JAALTF]2.0.CO;2

Howe, P.L., Reichelt-Brushett, A.J., Clark, M.W., 2012. Aiptasia pulchella: A tropical cnidarian representative for laboratory ecotoxicological research. Environ. Toxicol. Chem. 31:2653–62. DOI:

Hubot, N., Giering, S.L.C., Lucas, C.H., 2022. Similarities between the biochemical composition of jellyfish body and mucus. J. Plankton Res. 44:337–44. DOI:

Huettel, M., Wild, C., Gonelli, S., 2006. Mucus trap in coral reefs: Formation and temporal evolution of particle aggregates caused by coral mucus. Mar. Ecol. Prog. Ser. 307:69–84. DOI:

Hughes, R.G., 1975. The distribution of epizoites on the hydroid nemertesia antennina (l.). J. Mar. Biol. Assoc. 55:275–294. DOI:

Hughes, T.P., Barnes, M.L., Bellwood, D.R., Cinner, J.E., Cumming, G.S., Jackson, J.B.C., et al., 2017. Coral reefs in the Anthropocene. Nature. 546:82–90. DOI:

Iwai, T., Inaba, N., Naundorf, A., Zhang, Y., Gotoh, M., Iwasaki, H., et al., 2002. Molecular cloning and characterization of a novel UDP-GlcNAc: GalNAc-peptide β1,3-N-acetylglucosaminyltransferase (β3Gn-T6), an enzyme synthesizing the core 3 structure of O-glycans. J. Biol. Chem. 277:12802–9. DOI:

Jatkar, A.A., Brown, B.E., Bythell, J.C., Guppy, R., Morris, N.J., Pearson, J.P., 2010. Coral mucus: The properties of its constituent mucins. Biomacromolecules. 11:883–8. DOI:

Jeong, H.J., Yoo, Y. Du, Kang, N.S., Lim, A.S., Seong, K.A., Lee, S.Y., et al., 2012. Heterotrophic feeding as a newly identified survival strategy of the dinoflagellate Symbiodinium. Proc. Natl. Acad. Sci. U. S. A. 109:12604–9. DOI:

Jimnez-Guri, E., Okamura, B., Holland, P.W.H., 2007. Origin and evolution of a myxozoan worm. Integr. Comp. Biol. 47:752–8. DOI:

Kayal, E., Bentlage, B., Pankey, M.S., Ohdera, A.H., Medina, M., Plachetzki, D.C., et al., 2017. Comprehensive philogenomic analyses resolve cnidarian relationships and the origins of key organismal traits. PeerJ Preprints. 5:e3172v1 DOI:

Kayal, E., Bentlage, B., Pankey, M.S., Ohdera, A.H., Medina, M., Plachetzki, D.C., et al., 2018. Phylogenomics provides a robust topology of the major cnidarian lineages and insights on the origins of key organismal traits. BMC Evol. Biol. 18:1–18. DOI:

Kayal, E., Roure, B., Philippe, H., Collins, A.G., Lavrov, D. V, 2013. Cnidarian phylogenetic relationships as revealed by mitogenomics. BMC Evol. Biol. 13:1–18. DOI:

Kelman, D., Kashman, Y., Rosenberg, E., Kushmaro, A., Loya, Y., 2006. Antimicrobial activity of Red Sea corals. Mar. Biol. 149:357–363. DOI:

Kennedy, J., Codling, C.E., Jones, B. V, Dobson, A.D.W., Marchesi, J.R., 2008. Diversity of microbes associated with the marine sponge, Haliclona simulans, isolated from Irish waters and identification of polyketide synthase genes from the sponge metagenome. Environ. Microbiol. 10:1888–902. DOI:

Khalturin, K., Shinzato, C., Khalturina, M., Hamada, M., Fujie, M., Koyanagi, R., et al., 2019. Medusozoan genomes inform the evolution of the jellyfish body plan. Nat. Ecol. Evol. 3:811–22. DOI:

Kinchington, D., 1981. Organic-matrix synthesis by scleractinian coral larval and post-larval stages during skeletogenesis, in: Et Al (Eds) Proc 4th Int Coral Reef Symp. pp. 107–113.

Kramar, M.K., Tinta, T., Lučić, D., Malej, A., Turk, V., 2019. Bacteria associated with moon jellyfish during bloom and post-bloom periods in the Gulf of Trieste (northern Adriatic). PLoS One. 14:e0198056. DOI:

Krediet, C.J., Ritchie, K.B., Paul, V.J., Teplitski, M., 2013. Coral-associated micro-organisms and their roles in promoting coral health and thwarting diseases. Proc. R. Soc. B Biol. Sci. 280:20122328. DOI:

Krupp, D.A., 1984. Mucus production by corals exposed during an extreme low tide. Pacific Sci. 38:1–11.

Lai, S.K., Wang, Y.Y., Wirtz, D., Hanes, J., 2009. Micro- and macrorheology of mucus. Adv. Drug Deliv. Rev. 61:86–100. DOI:

Lang, T., Hansson, G.C., Samuelsson, T., 2007. Gel-forming mucins appeared early in metazoan evolution. Proc. Natl. Acad. Sci. U. S. A. 104:16209–14. DOI:

Lang, T., Klasson, S., Larsson, E., Johansson, M.E.V., Hansson, G.C., Samuelsson, T., 2016. Searching the Evolutionary Origin of Epithelial Mucus Protein Components - Mucins and FCGBP. Mol. Biol. Evol. 33:1921–36. DOI:

Lawson, C.A., Raina, J., Kahlke, T., Seymour, J.R., Suggett, D.J., 2018. Defining the core microbiome of the symbiotic dinoflagellate, Symbiodinium. Environ. Microbiol. Rep. 10:7–11. DOI:

Le Tissier, M.D.A.A., 1991. The nature of the skeleton and skeletogenic tissues in the Cnidaria, in: Hydrobiologia. Springer, Amsterdam, the Netherlands. p. 397–402. DOI:

Lebrato, M., Pitt, K.A., Sweetman, A.K., Jones, D.O.B., Cartes, J.E., Oschlies, A., et al., 2012. Jelly-falls historic and recent observations: A review to drive future research directions. Hydrobiologia. 690:227–45. DOI:

Lesser, M.P., 2004. Experimental biology of coral reef ecosystems. J. Exp. Mar. Bio. Ecol. 300:217–52. DOI:

Lewis, J.B., Price, W.S., 1975. Feeding mechanisms and feeding strategies of Atlantic reef corals. J. Zool. 176:527–44. DOI:

Lilley, M.K.S., Elineau, A., Ferraris, M., Thiéry, A., Stemmann, L., Gorsky, G., Lombard, F., 2014. Individual shrinking to enhance population survival: Quantifying the reproductive and metabolic expenditures of a starving jellyfish, Pelagia noctiluca. J. Plankton Res. 36:1585–97. DOI:

Liu, W., Mo, F., Jiang, G., Liang, H., Ma, C., Li, T., et al., 2018. Stress-induced mucus secretion and its composition by a combination of proteomics and metabolomics of the jellyfish aurelia coerulea. Mar. Drugs. 16:341. DOI:

Lommel, M., Strompen, J., Hellewell, A.L., Balasubramanian, G.P., Christofidou, E.D., Thomson, A.R., et al., 2018. Hydra Mesoglea Proteome Identifies Thrombospondin as a Conserved Component Active in Head Organizer Restriction. Sci. Rep. 8:1–18. DOI:

Lubbock, R., 1980. Clone-specific cellular recognition in a sea anemone. Proc. Natl. Acad. Sci. 77:6667–9. DOI:

Lucas, C.H., Graham, W.M., Widmer, C., 2012. Jellyfish Life Histories: Role of Polyps in Forming and Maintaining Scyphomedusa Populations. Adv. Mar. Biol. 63:133–96. DOI:

Mall, A.S., 2008. Analysis of mucins: Role in laboratory diagnosis. J. Clin. Pathol. 61:1018–24. DOI:

Marshall, A.T., Wright, O.P., 1993. Confocal laser scanning light microscopy of the extra-thecal epithelia of undecalcified scleractinian corals. Cell Tissue Res. 272:533–43. DOI:

Marshall, A.T., Wright, O.P., 1991. Freeze‐substitution of scleractinian coral for confocal scanning laser microscopy and X‐ray microanalysis. J. Microsc. 162:341–54. DOI:

Martorelli, S.R., 2001. Digenea parasites of jellyfish and ctenophores of the southern Atlantic. Hydrobiologia. 451:305–10. DOI:

Mayack, C., Naug, D., 2009. Energetic stress in the honeybee Apis mellifera from Nosema ceranae infection. J. Invertebr. Pathol. 100:185–8. DOI:

Mayer, A.M.S., Rodríguez, A.D., Taglialatela-Scafati, O., Fusetani, N., 2013. Marine pharmacology in 2009–2011: Marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar. Drugs. 11:2510–73. DOI:

Mayer, F.W., Wild, C., 2010. Coral mucus release and following particle trapping contribute to rapid nutrient recycling in a Northern Red Sea fringing reef. Mar. Freshw. Res. 61:1006–14. DOI:

McCanch, N. V, McCanch, M., Bell, J., 1996. Fulmars feeding on jellyfish. Br. Birds 89:569.

McFadden, C.S., Van Ofwegen, L.P., Quattrini, A.M., 2022. Revisionary systematics of Octocorallia (Cnidaria: Anthozoa) guided by phylogenomics. Available from: DOI:

McGrath, E.C., Smith, D.J., Jompa, J., Bell, J.J., 2017. Adaptive mechanisms and physiological effects of suspended and settled sediment on barrel sponges. J. Exp. Mar. Bio. Ecol. 496:74–83. DOI:

Medzhitov, R., 2008. Origin and physiological roles of inflammation. Nature. 454:428–35. DOI:

Meikle, P., Richards, G.N., Yellowlees, D., 1988. Structural investigations on the mucus from six species of coral. Mar. Biol. 99:187–93. DOI:

Milisenda, G., Rossi, S., Vizzini, S., Fuentes, V.L., Purcell, J.E., Tilves, U., Piraino, S., 2018. Seasonal variability of diet and trophic level of the gelatinous predator Pelagia noctiluca (Scyphozoa). Sci. Rep. 8:1–13. DOI:

Miller, D.J., Hemmrich, G., Ball, E.E., Hayward, D.C., Khalturin, K., Funayama, N., et al., 2007. The innate immune repertoire in Cnidaria - Ancestral complexity and stochastic gene loss. Genome Biol. 8:1–13. DOI:

Mitchell, R., Chet, I., 1975. Bacterial attack of corals in polluted seawater. Microb. Ecol. 2:227–33. DOI:

Moss, A.G., Estes, A.M., Muellner, L.A., Morgan, D.D., 2001. Protistan epibionts of the ctenophore Mnemiopsis mccradyi Mayer, in: Hydrobiologia. 451:295–304. DOI:

Murphy, F., Quinn, B., 2018. The effects of microplastic on freshwater Hydra attenuata feeding, morphology & reproduction. Environ. Pollut. 234:487–94. DOI:

Murty, V.L.N., Sarosiek, J., Slomiany, A., Slomiany, B.L., 1984. Effect of lipids and proteins on the viscosity of gastric mucus glycoprotein. Biochem. Biophys. Res. Commun. 121:521–9. DOI:

Muscatine, L., Falkowski, P.G., Porter, J.W., Dubinsky, Z., 1984. Fate of photosynthetic fixed carbon in light-and shade-adapted colonies of the symbiotic coral Stylophora pistillata. Proc. R. Soc. London. Ser. B. Biol. Sci. 222:181–202. DOI:

Muscatine, L., Porter, J.W., 1977. Reef Corals: Mutualistic Symbioses Adapted to Nutrient-Poor Environments. Bioscience. 27:454–60. DOI:

Mydlarz, L.D., Fuess, L., Mann, W., Pinzón, J.H., Gochfeld, D.J., 2016. Cnidarian immunity: From genomes to phenomes, in: Goffredo, S., Dubinsky, Z. (Eds.), The Cnidaria, Past, Present and Future: The World of Medusa and Her Sisters. Springer International Publishing, Cham, Switzerland. p. 441–66. DOI:

Nagata, R.M., Morandini, A.C., 2018. Diet, prey selection, and individual feeding rates of the jellyfish Lychnorhiza lucerna (Scyphozoa, Rhizostomeae). Mar. Biol. 165:187. DOI:

Nakajima, R., Yoshida, T., Azman, B.A.R., Zaleha, K., Othman, B.H.R., Toda, T., 2009. In situ release of coral mucus by Acropora and its influence on the heterotrophic bacteria. Aquat. Ecol. 43:815–23. DOI:

Naumann, M.S., Mayr, C., Struck, U., Wild, C., 2010. Coral mucus stable isotope composition and labeling: experimental evidence for mucus uptake by epizoic acoelomorph worms. Mar. Biol. 157:2521–31. DOI:

Naumann, M.S., Richter, C., el-Zibdah, M., Wild, C., 2009. Coral mucus as an efficient trap for picoplanktonic cyanobacteria: implications for pelagic–benthic coupling in the reef ecosystem. Mar. Ecol. Prog. Ser. 385:65–76. DOI:

Naumann, M.S., Richter, C., Mott, C., el-Zibdah, M., Manasrah, R., Wild, C., 2012. Budget of coral-derived organic carbon in a fringing coral reef of the Gulf of Aqaba, Red Sea. J. Mar. Syst. 105:20–9. DOI:

Neff, J.M., Anderson, J.W., 1981. Response of marine animals to petroleum and specific petroleum hydrocarbons. J of Appl. Ecol. 19:674. DOI:

Neudecker, S., 1981. Growth and survival of scleractinian corals exposed to thermal effluents at Guam, in: Proceedings of the 4th International Coral Reef Symposium. Available from:

Niggl, W., Glas, M., Laforsch, C., Mayr, C., Wild, C., 2009. First evidence of coral bleaching stimulating organic matter release by reef corals. Proceedings of the 11th International Coral Reef Symposium. Available from:

Novosolov, M., Yahalomi, D., Chang, E.S., Fiala, I., Cartwright, P., Huchon, D., 2022. The Phylogenetic Position of the Enigmatic, Polypodium hydriforme (Cnidaria, Polypodiozoa): Insights from Mitochondrial Genomes. Genome Biol. Evol. 14:evac112. DOI:

Ocampo, I.D., Cadavid, L.F., 2015. Mechanisms of immune responses in Cnidarians. Acta Biológica Colomb. 20:5–11. DOI:

Ohdera, A.H., Abrams, M.J., Ames, C.L., Baker, D.M., Suescún-Bolívar, L.P., Collins, A.G., et al., 2018. Upside-down but headed in the right direction: review of the highly versatile Cassiopea xamachana system. Front. Ecol. Evol. 35. DOI:

Okamura, B., Gruhl, A., Bartholomew, J.L., 2015. An introduction to myxozoan evolution, ecology and development, in: Myxozoan Evolution, Ecology and Development. Springer, Amsterdam, the Netherlands. p. 1–20. DOI:

Otero, M. del M., Numa, C., Bo, M., Orejas, C., Garrabou, J., Cerrano, C., et al., 2017. Overview of the conservation status of Mediterranean Anthozoa. Available from:

Otero‐Gonzáiez, A.J., Magalhães, B.S., Garcia‐Villarino, M., López‐Abarrategui, C., Sousa, D.A., Dias, S.C., Franco, O.L., 2010. Antimicrobial peptides from marine invertebrates as a new frontier for microbial infection control. FASEB J. 24:1320–34. DOI:

Pages, F., 2000. Biological associations between barnacles and jellyfish with emphasis on the ectoparasitism of alepas pacifica (lepadomorpha) on diplulmaris malayensis (scyphozoa). J. Nat. Hist. 34:2045–56. DOI:

Pagès, F., Corbera, J., Lindsay, D., 2007. Piggybacking pycnogonids and parasitic narcomedusae on Pandea rubra (Anthomedusae, Pandeidae). Plankt. Benthos Res. 2:83–90. DOI:

Palardy, J.E., Rodrigues, L.J., Grottoli, A.G., 2008. The importance of zooplankton to the daily metabolic carbon requirements of healthy and bleached corals at two depths. J. Exp. Mar. Bio. Ecol. 367:180–8. DOI:

Palmer, C. V., Traylor-Knowles, N., 2012. Towards an integrated network of coral immune mechanisms. Proc. R. Soc. B Biol. Sci. 279:4106–14. DOI:

Palmer, C. V., Mydlarz, L.D., Willis, B.L., 2008. Evidence of an inflammatory-like response in non-normally pigmented tissues of two scleractinian corals. Proc. R. Soc. B Biol. Sci. 275:2687–93. DOI:

Palmer, C. V., Traylor-Knowles, N.G., 2018. Cnidaria: Anthozoans in the hot seat, in: Cooper, E.L. (Ed.), Advances in Comparative Immunology. Springer International Publishing, Cham, Switzerland. p. 51–93. DOI:

Parisi, M.G., Parrinello, D., Stabili, L., Cammarata, M., 2020. Cnidarian immunity and the repertoire of defense mechanisms in anthozoans. Biology (Basel). 11:283. DOI:

Park, E., Hwang, D.S., Lee, J.S., Song, J.I., Seo, T.K., Won, Y.J., 2012. Estimation of divergence times in cnidarian evolution based on mitochondrial protein-coding genes and the fossil record. Mol. Phylogenet. Evol. 62:329–45. DOI:

Parker, H.J., Krumlauf, R., 2017. Segmental arithmetic: summing up the Hox gene regulatory network for hindbrain development in chordates. Wiley Interdiscip. Rev. Dev. Biol. 6:e286. DOI:

Patton, W.K., 1994. Distribution and ecology of animals associated with branching corals (Acropora spp.) from the Great Barrier Reef, Australia. Bull. Mar. Sci. 55:193–211.

Patwa, A., Thiéry, A., Lombard, F., Lilley, M.K.S., Boisset, C., Bramard, J.F., et al., 2015. Accumulation of nanoparticles in “jellyfish” mucus: A bio-inspired route to decontamination of nano-waste. Sci. Rep. 5:11387. DOI:

Pauly, D., Graham, W., Libralato, S., Morissette, L., Deng Palomares, M.L., 2009. Jellyfish in ecosystems, online databases, and ecosystem models. Hydrobiologia. 616:67–85. DOI:

Pearson, R., Tellam, R., Xu, B., Zhao, Z., Willcox, M., Kongsuwan, K., 2011. Isolation, Biochemical Characterization and Anti-adhesion Property of Mucin from the Blue Blubber Jellyfish (Catostylus mosaicus). Available from: DOI:

Perissinotto, R., Pakhomov, E.A., 1998. Contribution of salps to carbon flux of marginal ice zone of the Lazarev Sea, Southern Ocean. Mar. Biol. 131:25–32. DOI:

Peters, E.C., Meyers, P.A., Yevich, P.P., Blake, N.J., 1981. Bioaccumulation and histopathological effects of oil on a stony coral. Mar. Pollut. Bull. 12:333–9. DOI:

Petralia, R.S., Mattson, M.P., Yao, P.J., 2014. Aging and longevity in the simplest animals and the quest for immortality. Ageing Res. Rev. 16:66–82. DOI:

Piggot, A.M., Fouke, B.W., Sivaguru, M., Sanford, R.A., Gaskins, H.R., 2009. Change in zooxanthellae and mucocyte tissue density as an adaptive response to environmental stress by the coral, Montastraea annularis. Mar. Biol. 156:2379–89. DOI:

Pitt, K.A., Welsh, D.T., Condon, R.H., 2009. Influence of jellyfish blooms on carbon, nitrogen and phosphorus cycling and plankton production. Hydrobiologia. 616:133–49. DOI:

Porporato, E.M.D., Lo Giudice, A., Michaud, L., de Domenico, E., Spanò, N., 2013. Diversity and Antibacterial Activity of the Bacterial Communities Associated with Two Mediterranean Sea Pens, Pennatula phosphorea and Pteroeides spinosum (Anthozoa: Octocorallia). Microb. Ecol. 66:701–14. DOI:

Purcell, J.E., 1989. Predation on fish larvae and eggs by the hydromedusa Aequorea victoria at a herring spawning ground in British Columbia. Can. J. Fish. Aquat. Sci. 46:1415–27. DOI:

Purcell, J.E., 2005. Climate effects on formation of jellyfish and ctenophore blooms: A review. J. Mar. Biol. Assoc. 85:461–76. DOI:

Purcell, J.E., 2012. Jellyfish and ctenophore blooms coincide with human proliferations and environmental perturbations. Ann. Rev. Mar. Sci. 4:209–35. DOI:

Purcell, J.E., Arai, M.N., 2001. Interactions of pelagic cnidarians and ctenophores with fish: A review. Hydrobiologia. 451:27–44. DOI:

Purcell, J.E., Clarkin, E., Doyle, T.K., 2012. Foods of Velella velella (Cnidaria: Hydrozoa) in algal rafts and its distribution in Irish seas. Hydrobiologia. 690:47–55. DOI:

Purcell, J.E., Sturdevant, M. V., 2001. Prey selection and dietary overlap among zooplanktivorous jellyfish and juvenile fishes in Prince William Sound, Alaska. Mar. Ecol. Prog. Ser. 210:67–83. DOI:

Ramondenc, S., Eveillard, D., Guidi, L., Lombard, F., Delahaye, B., 2020. Probabilistic modeling to estimate jellyfish ecophysiological properties and size distributions. Sci. Rep. 10:1–13. DOI:

Reshef, L., Koren, O., Loya, Y., Zilber‐Rosenberg, I., Rosenberg, E., 2006. The coral probiotic hypothesis. Environ. Microbiol. 8:2068–73. DOI:

Reverter, M., Tapissier-Bontemps, N., Lecchini, D., Banaigs, B., Sasal, P., 2018. Biological and ecological roles of external fish mucus: A review. Fishes. 3:41. DOI:

Richardson, A.J., Bakun, A., Hays, G.C., Gibbons, M.J., 2009. The jellyfish joyride: causes, consequences and management responses to a more gelatinous future. Trends Ecol. Evol. 24:312–22. DOI:

Riegl, B., Branch, G.M., 1995. Effects of sediment on the energy budgets of four scleractinian (Bourne 1900) and five alcyonacean (Lamouroux 1816) corals. J. Exp. Mar. Bio. Ecol. 186:259–75. DOI:

Rinkevich, B., Wolodarsky, Z., Loya, Y., 1991. Coral-crab association: a compact domain of a multilevel trophic system. Hydrobiologia. 216:279–84. DOI:

Ritchie, K.B., 2006. Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar. Ecol. Prog. Ser. 322:1–14. DOI:

Ritchie, K.B., Smith, G.W., 2004. Microbial communities of coral surface mucopolysaccharide layers. Coral Health and Disease. p. 259–64. DOI:

Rivera-Ortega, J., Thomé, P.E., 2018. Contrasting antibacterial capabilities of the surface mucus layer from three symbiotic cnidarians. Front. Mar. Sci. 5:392. DOI:

Rodrigues, L.J., Grottoli, A.G., 2007. Energy reserves and metabolism as indicators of coral recovery from bleaching. Limnol. Oceanogr. 52:1874–82. DOI:

Rogers, C.S., 1990. Responses of coral reefs and reef organisms to sedimentation. Mar. Ecol. Prog. Ser. 62:185–202. DOI:

Rohwer, F., Breitbart, M., Jara, J., Azam, F., Knowlton, N., 2001. Diversity of bacteria associated with the Caribbean coral Montastraea franksi. Coral Reefs. 20:85–91. DOI:

Romano, S.L., Palumbi, S.R., 1996. Evolution of scleractinian corals inferred from molecular systematics. Science. 271:640–2. DOI:

Rosenberg, E., Koren, O., Reshef, L., Efrony, R., Zilber-Rosenberg, I., 2007. The role of microorganisms in coral health, disease and evolution. Nat. Rev. Microbiol. 5:355–62. DOI:

Rosenberg, E., Sharon, G., Zilber‐Rosenberg, I., 2009. The hologenome theory of evolution contains Lamarckian aspects within a Darwinian framework. Environ. Microbiol. 11:2959–62. DOI:

Rosenberg, E., Zilber‐Rosenberg, I., 2011. Symbiosis and development: the hologenome concept. Birth Defects Res. Part C Embryo Today Rev. 93:56–66. DOI:

Rossi, S., Ribes, M., Coma, R., Gili, J.M., 2004. Temporal variability in Zooplankton prey capture rate of the passive suspension feeder Leptogorgia sarmentosa (Cnidaria: Octocorallia), a case study. Mar. Biol. 144:89–99. DOI:

Rottini Sandrini, L., Avian, M., 1991. Reproduction of Pelagia noctiluca in the central and northern Adriatic Sea. Hydrobiologia. 216:197–202. DOI:

Rublee, P.A., Lasker, H.R., Gottfried, M., Roman, M.R., 1980. production and bacterial colonization of mucus from the soft coral Briarium asbestinum. Bull. Mar. Sci. 30:888–93.

Ruzicka, J., Brodeur, R.D., Cieciel, K., Decker, M.B., 2020. Examining the ecological role of jellyfish in the Eastern Bering Sea. ICES J. Mar. Sci. 77:791–802. DOI:

Rypien, K.L., Ward, J.R., Azam, F., 2010. Antagonistic interactions among coral‐associated bacteria. Environ. Microbiol. 12:28–39. DOI:

Sadd, B.M., Schmid-Hempel, P., 2009. Principles of ecological immunology. Evol. Appl. 2:113–21. DOI:

Santos, G.S., Amaral, F.D., Sassi, C.F.C., Schwamborn, R., 2016. Response of the zooxanthellae of Palythoa caribaeorum (Cnidaria: Zoanthidea) to different environmental conditions in coastal and oceanic ecosystems of the Tropical Atlantic. Helgol. Mar. Res. 70:2. DOI:

Santos, M.E.A., Kitahara, M.V., Lindner, A., Reimer, J.D., 2016. Overview of the order Zoantharia (Cnidaria: Anthozoa) in Brazil. Mar. Biodivers. 46:547–59. DOI:

Sanz‐Martín, M., Pitt, K.A., Condon, R.H., Lucas, C.H., Novaes de Santana, C., Duarte, C.M., 2016. Flawed citation practices facilitate the unsubstantiated perception of a global trend toward increased jellyfish blooms. Glob. Ecol. Biogeogr. 25:1039–49. DOI:

Savoca, S., Lo Giudice, A., Papale, M., Mangano, S., Caruso, C., Spanò, N., et al., 2019. Antarctic sponges from the Terra Nova Bay (Ross Sea) host a diversified bacterial community. Sci. Rep. 9:16135. DOI:

Schaub, J., Hunt, B.P. V, Pakhomov, E.A., Holmes, K., Lu, Y., Quayle, L., 2018. Using unmanned aerial vehicles (UAVs) to measure jellyfish aggregations. Mar. Ecol. Prog. Ser. 591:29–36. DOI:

Schöttner, S., Hoffmann, F., Wild, C., Rapp, H.T., Boetius, A., Ramette, A., 2009. Inter-and intra-habitat bacterial diversity associated with cold-water corals. ISME J. 3:756–9. DOI:

Schuhmacher, H., 1977. Ability in fungiid corals to overcome sedimentation. 3rd International Coral Reef Symposium. Available from:

Sebens, K.P., 1982. The limits to indeterminate growth: an optimal size model applied to passive suspension feeders. Ecology. 63:209–22. DOI:

Shanks, A., Graham, W., 1988. Chemical defense in a scyphomedusa. Mar. Ecol. Prog. Ser. 45:81–6. DOI:

Sharp, K.H., Distel, D., Paul, V.J., 2012. Diversity and dynamics of bacterial communities in early life stages of the Caribbean coral Porites astreoides. ISME J. 6:790–801. DOI:

Sheldon, B.C., Verhulst, S., 1996. Ecological immunology: Costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol. Evol. 11:317–21. DOI:

Sheridan, C., Grosjean, P., Leblud, J., Palmer, C. V., Kushmaro, A., Eeckhaut, I., 2014. Sedimentation rapidly induces an immune response and depletes energy stores in a hard coral. Coral Reefs. 33:1067–76. DOI:

Shick, J.M., 1991. Energy metabolism and respiratory gas exchange, in: A Functional Biology of Sea Anemones. Springer, Amsterdam, the Netherlands. p. 119–173. DOI:

Shinzato, C., Shoguchi, E., Kawashima, T., Hamada, M., Hisata, K., Tanaka, M., et al., 2011. Using the Acropora digitifera genome to understand coral responses to environmental change. Nature. 476:320–3. DOI:

Shnit-Orland, M., Kushmaro, A., 2009. Coral mucus-associated bacteria: a possible first line of defense. FEMS Microbiol. Ecol. 67:371–80. DOI:

Siddall, M.E., Martin, D.S., Bridge, D., Desser, S.S., Cone, D.K., 1995. The demise of a phylum of protists: Phylogeny of myxozoa and other parasitic cnidaria. J. Parasitol. 81:961–7. DOI:

Siva‐Jothy, M.T., Thompson, J.J.W., 2002. Short‐term nutrient deprivation affects immune function. Physiol. Entomol. 27:206–12. DOI:

Sleigh, M.A., 1989. Adaptations of ciliary systems for the propulsion of water and mucus. Comp. Biochem. Physiol. A. Comp. Physiol. 94:359–64. DOI:

Smith, V.J., Desbois, A.P., Dyrynda, E.A., 2010. Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Mar. Drugs. 8:1213-62. DOI:

Sokolow, S., 2009. Effects of a changing climate on the dynamics of coral infectious disease: a review of the evidence. Dis. Aquat. Organ. 87:5–18. DOI:

Sommer, U., Lengfellner, K., 2008. Climate change and the timing, magnitude, and composition of the phytoplankton spring bloom. Glob. Chang. Biol. 14:1199–208. DOI:

Soetaert, K., Mohn, C., Rengstorf, A., Grehan, A., Van Oevelen, D., 2016. Ecosystem engineering creates a direct nutritional link between 600-m deep cold-water coral mounds and surface productivity. Sci. Rep. 6:35057. DOI:

Stabili, L., Rizzo, L., Basso, L., Marzano, M., Fosso, B., Pesole, G., Piraino, S., 2020. The Microbial Community Associated with Rhizostoma pulmo: Ecological Significance and Potential Consequences for Marine Organisms and Human Health. Mar. Drugs. 18:437. DOI:

Stabili, L., Schirosi, R., Parisi, M.G., Piraino, S., Cammarata, M., 2015. The mucus of Actinia equina (Anthozoa, Cnidaria): An unexplored resource for potential applicative purposes. Mar. Drugs. 13:5276–96. DOI:

Stafford-Smith, M.G., 1993. Sediment-rejection efficiency of 22 species of Australian scleractinian corals. Mar. Biol. 115:229–43. DOI:

Stafford-Smith, M.G., Ormond, R.F.G., 1992. Sediment-rejection mechanisms of 42 species of Australian scleractinian corals. Mar. Freshw. Res. 43:683–705. DOI:

Steinberg, D.K., Landry, M.R., 2017. Zooplankton and the ocean carbon cycle. Ann. Rev. Mar. Sci. 9:413–44. DOI:

Suchman, C.L., Daly, E.A., Keister, J.E., Peterson, W.T., Brodeur, R.D., 2008. Feeding patterns and predation potential of scyphomedusae in a highly productive upwelling region. Mar. Ecol. Prog. Ser. 358:161–72. DOI:

Tanaka, Y., Miyajima, T., Umezawa, Y., Hayashibara, T., Ogawa, H., Koike, I., 2009. Net release of dissolved organic matter by the scleractinian coral Acropora pulchra. J. Exp. Mar. Bio. Ecol. 377:101–6. DOI:

Tarrant, A.M., 2007. Hormonal signaling in cnidarians: Do we understand the pathways well enough to know whether they are being disrupted? Ecotoxicology. 16:5–13. DOI:

Technau, U., Steele, R.E., 2011. Evolutionary crossroads in developmental biology: Cnidaria. Development. 138:1447–58. DOI:

Thompson, J.H., Shinn, E.A., Bright, T.J., 1980. Chapter 16 Effects of Drilling Mud on Seven Species of Reef-Building Corals as Measured in the Field and Laboratory. Elsevier Oceanogr. Ser. 27:433–53. DOI:

Tinta, T., Klun, K., Herndl, G.J., 2021. The importance of jellyfish–microbe interactions for biogeochemical cycles in the ocean. Limnol. Oceanogr. 66:2011–32. DOI:

Tinta, T., Kogovšek, T., Klun, K., Malej, A., Herndl, G.J., Turk, V., 2019. Jellyfish-associated microbiome in the marine environment: exploring its biotechnological potential. Mar. Drugs. 17:94. DOI:

Tinta, T., Kogovšek, T., Malej, A., Turk, V., 2012. Jellyfish modulate bacterial dynamic and community structure. PLoS One. 7:e39274. DOI:

Tinta, T., Kogovšek, T., Turk, V., Shiganova, T.A., Mikaelyan, A.S., Malej, A., 2016. Microbial transformation of jellyfish organic matter affects the nitrogen cycle in the marine water column—A Black Sea case study. J. Exp. Mar. Bio. Ecol. 475:19–30. DOI:

Tinta, T., Malej, A., Kos, M., Turk, V., 2010. Degradation of the Adriatic medusa Aurelia sp. by ambient bacteria. Hydrobiologia. 645:179-91. DOI:

Titelman, J., Riemann, L., Sørnes, T.A., Nilsen, T., Griekspoor, P., Båmstedt, U., 2006. Turnover of dead jellyfish: Stimulation and retardation of microbial activity. Mar. Ecol. Prog. Ser. 325:43–58. DOI:

Tremblay, P., Naumann, M.S., Sikorski, S., Grover, R., Ferrier-Pagès, C., 2012. Experimental assessment of organic carbon fluxes in the scleractinian coral Stylophora pistillata during a thermal and photo stress event. Mar. Ecol. Prog. Ser. 453:63–77. DOI:

Turk, V., Fortič, A., Kramar, M.K., Žnidarič, M.T., Štrus, J., Kostanjšek, R., Malej, A., 2021. Observations on the surface structure of aurelia solida (Scyphozoa) polyps and medusae. Diversity. 13:244. DOI:

Vacelet, E., Thomassin, B.A., 1991. Microbial utilization of coral mucus in long term in situ incubation over a coral reef. Hydrobiologia. 211:19–32. DOI:

Van Oppen, M.J.H., Gates, R.D., Blackall, L.L., Cantin, N., Chakravarti, L.J., Chan, W.Y., et al., 2017. Shifting paradigms in restoration of the world’s coral reefs. Glob. Chang. Biol. 23:3437–48. DOI:

Wagner, D., Luck, D.G., Toonen, R.J., 2012. The Biology and Ecology of Black Corals (Cnidaria: Anthozoa: Hexacorallia: Antipatharia). Adv. Mar. Biol. 63:67-132. DOI:

Wasserthal, L.T., Wasserthal, W., 1973. Ökologische bedeutung der schleimsekretion bei den planula-larven der hydroidengattung Eudendrium. Mar. Biol. 22:341–345. DOI:

Weber, M., De Beer, D., Lott, C., Polerecky, L., Kohls, K., Abed, R.M.M., et al., 2012. Mechanisms of damage to corals exposed to sedimentation. Proc. Natl. Acad. Sci. U. S. A. 109:E1558–67. DOI:

Webster, N.S., Bourne, D., 2007. Bacterial community structure associated with the Antarctic soft coral, Alcyonium antarcticum. FEMS Microbiol. Ecol. 59:81–94. DOI:

Weiland-Bräuer, N., Neulinger, S.C., Pinnow, N., Künzel, S., Baines, J.F., Schmitz, R.A., 2015. Composition of bacterial communities associated with Aurelia aurita changes with compartment, life stage, and population. Appl. Environ. Microbiol. 81:6038–52. DOI:

Weiland-Bräuer, N., Pinnow, N., Langfeldt, D., Roik, A., Güllert, S., Chibani, C.M., et al., 2020. The native microbiome is crucial for offspring generation and fitness of Aurelia aurita. MBio. 11:e02336-20. DOI:

Welsh, D.T., Dunn, R.J.K., Meziane, T., 2009. Oxygen and nutrient dynamics of the upside down jellyfish (cassiopea sp.) and its influence on benthic nutrient exchanges and primary production. Hydrobiologia. 635:351–62. DOI:

West, E.J., Pitt, K.A., Welsh, D.T., Koop, K., Rissik, D., 2009. Top‐down and bottom‐up influences of jellyfish on primary productivity and planktonic assemblages. Limnol. Oceanogr. 54:2058–71. DOI:

Wild, C., Huettel, M., Klueter, A., Kremb, S.G., Rasheed, M.Y.M., Jørgensen, B.B., 2004. Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature. 428:66–70. DOI:

Wild, C., Laforsch, C., Huettel, M., 2006. Detection and enumeration of microbial cells within highly porous calcareous reef sands. Mar. Freshw. Res. 57:415–20. DOI:

Wild, C., Naumann, M., Niggl, W., Haas, A., 2010. Carbohydrate composition of mucus released by scleractinian warm-and cold-water reef corals. Aquat. Biol. 10:41–5. DOI:

Wild, C., Woyt, H., Huettel, M., 2005. Influence of coral mucus on nutrient fluxes in carbonate sands. Mar. Ecol. Prog. Ser. 287:87–98. DOI:

Wolenski, F.S., Chandani, S., Stefanik, D.J., Jiang, N., Chu, E., Finnerty, J.R., Gilmore, T.D., 2011. Two polymorphic residues account for the differences in dna binding and transcriptional activation by nf-jb proteins encoded by naturally occurring alleles in nematostella vectensis. J. Mol. Evol. 73:325–36. DOI:

Wooldridge, S.A., 2009. A new conceptual model for the enhanced release of mucus in symbiotic reef corals during “bleaching” conditions. Mar. Ecol. Prog. Ser. 396:145–52. DOI:

Wooldridge, S.A., 2017. Instability and breakdown of the coral–algae symbiosis upon exceedence of the interglacial pCO2 threshold (>260 ppmv): The “missing” Earth-System feedback mechanism. Coral Reefs. 36:1025–37. DOI:

Work, T., Meteyer, C., 2014. To understand coral disease, look at coral cells. Ecohealth. 11:610–18. DOI:

Yonge, C.M., 1930. Studies on the Physiology of Corals IV. The Structure Distribution and Physiology of the Zooxanthellae. Available from:

Zamzow, J.P., 2007. Ultraviolet-absorbing compounds in the mucus of shallow-dwelling tropical reef fishes correlate with environmental water clarity. Mar. Ecol. Prog. Ser. 343:263–271. DOI:

Zapata, F., Goetz, F.E., Smith, S.A., Howison, M., Siebert, S., Church, S.H., et al., 2015. Phylogenomic analyses support traditional relationships within Cnidaria. PLoS One. 10:e0139068. DOI:

Zhao, Y., Parry, L.A., Vinther, J., Dunn, F.S., Li, Y., Wei, F., 2021. An early Cambrian polyp reveals an anemone-like ancestor for medusozoan cnidarians. Available from: DOI:

Savoca, S., Di Fresco, D., Alesci, A., Capillo, G., & Spanò, N. (2022). Mucus secretions in Cnidarian, an ecological, adaptive and evolutive tool. Advances in Oceanography and Limnology, 13(2).


Download data is not yet available.