Dissolved fluxes of nutrients and carbon at the sediment-water interface in the Adriatic Sea: review of early data and methods from the Italian National Research Council (CNR)


Submitted: 19 December 2022
Accepted: 14 April 2023
Published: 22 June 2023
Abstract Views: 1075
PDF: 473
SUPPLEMENTARY PDF: 45
HTML: 30
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

We report the measurement of the Fluxes of Dissolved Compounds at the Sediment-Water Interface (DFSWIs), obtained by analyzing data collected in the Italian Exclusive Economic Zone (EEZ) of the Northern and Central Adriatic Sea from 1982. We also describe the methods, honed by Italy’s Consiglio Nazionale delle Ricerche (CNR), employed to measure and calculate DFSWIs, including benthic chambers and landers, sediment-water interface micro-profiling, on-board incubation, and pore water modeling. Data analysis demonstrated that in situ measurements are the most reliable approaches, but that on-board collected data also supply interesting results. The DFSWI data allowed to divide the Adriatic seafloor into areas with similar DFSWI types and intensities and to define the role of sediments as sources or sinks of chemicals such as nutrients, Dissolved Inorganic Carbon (DIC), and metals. DFSWIs mainly depend on dissolved and solid river inputs, Marine Organic Matter (mOM) production, and sediment reworking. They show a seasonal temperature-related trend, which in summer induces increased chemical reaction kinetics and microbial activity. DFSWIs decline from the Po River mouths southward, along the Holocene mud wedge. North of the Po River Delta, the DFSWIs are weaker and confined to the areas in front of the major river mouths, due to poor Organic Matter (OM) inputs and strong reworking of bottom sediments. The area south of the Po Delta cusp is characterized by strong DFSWIs, due to the high deposition of solid inputs from the Po River, strong primary production, and protection from the Western Adriatic Current and Bora storms; in summer, higher temperatures, and calm hydrodynamic conditions generate near-bottom hypoxic to anoxic environments in this area. In Northern and Central Adriatic offshore areas, negative DIC and phosphate fluxes are due to poorly reactive OM reaching this area and to the mainly carbonate composition and oxic environment of local bottom sediments. DFSWI data analysis highlighted the important contribution of sediments to marine carbon and nutrient cycles. This is particularly important for carbon, which plays a major role in seawater acidification and global climate change. The study also provides average DFSWI data for each diagenetic area, which allow calculating the carbon and nutrient budgets in the Adriatic Sea.


Alvisi F, Giani M, Ravaioli M, Giordano P, 2013. Role of sedimentary environment in the development of hypoxia and anoxia in the NW Adriatic shelf (Italy). Estuarine, Coastal and Shelf Science. 128:9-21. DOI: https://doi.org/10.1016/j.ecss.2013.05.012

Artegiani A, Paschini E, Russo A, et al., 1997. The Adriatic Sea general circulation. Part I: Air–sea interactions and water mass structure. Journal of physical oceanography. 27:1492-514. DOI: https://doi.org/10.1175/1520-0485(1997)027<1492:TASGCP>2.0.CO;2

Barbanti A, Bergamini MC, Frascari F, et al., 1995. Diagenetic processes and nutrient fluxes at the sediment water interface, Northern Adriatic Sea, Italy, Marine & Freshwater Research. 46:55-67. DOI: https://doi.org/10.1071/MF9950055

Baric A, Kuspilic G, Matijevic S, 2002. Nutrient (N, P, Si) fluxes between marine sediments and water column in coastal and open Adriatic Hydrobiologia. 475/476:151–9. DOI: https://doi.org/10.1023/A:1020386204869

Bergamini MC, Frascari F, Marcaccio M, et al., 1997a. Flussi bentici. Relazione finale per il progetto PRISMA I, sotto progetto “Flussi da e verso i fondali”. Istituto di Geologia Marina - CNR, Bologna, Italy: 7 pp.

Bergamini MC, Frascari F, Marcaccio M, et al., 1997b. Processi diagenetici. Relazione finale per il progetto PRISMA I, sotto progetto “Flussi da e verso i fondali”. Istituto di Geologia Marina - CNR, Bologna, Italy: 9 pp.

Berelson WM, Hammond DE, 1986. The calibration of a new free-vehicle benthic flux chamber for use in the deep sea. Deep Sea Research Part A. Oceanog. Research Papers. 33:1439-54. DOI: https://doi.org/10.1016/0198-0149(86)90045-2

Berg P, Glud RN, Hume A, et al., 2009. Eddy correlation measurements of oxygen uptake in deep ocean sediments. Limnol. and Oceanog. Methods. 7:576-84. DOI: https://doi.org/10.4319/lom.2009.7.576

Berner RA, 1980. Early diagenesis: a theoretical approach. No. 1. Princeton University Press, Princeton, USA. 256 pp. DOI: https://doi.org/10.1515/9780691209401

Bertuzzi A, Faganeli J, Brambati A, 1996. Annual variation of benthic nutrient fluxes in shallow coastal waters (Gulf of Trieste, Northern Adriatic Sea). Mar. Ecol. 17:261-78. DOI: https://doi.org/10.1111/j.1439-0485.1996.tb00507.x

Bertuzzi A., Faganeli J, Welker C, Brambati A, 1997. Benthic Fluxes of Dissolved Inorganic Carbon, Nutrients and Oxygen in the Gulf of Trieste (Northern Adriatic) Water, Air, and Soil Pollution. 99:305–14. DOI: https://doi.org/10.1007/978-94-011-5552-6_32

Boldrin A, Langone L, Miserocchi S, et al., 2005. Po River plume on the Adriatic continental shelf: Dispersion and sedimentation of dissolved and suspended matter during different river discharge rates. Marine Geology. 222–223:135–58. DOI: https://doi.org/10.1016/j.margeo.2005.06.010

Bortoluzzi G, Spagnoli F, Aliani S, et al., 2014. New geological, geophysical and biological insights on the hydrothermal system of the Panarea – Basiluzzo Volcanic complex (Aeolian Islands, Tyrrhenian Sea. SGI-SIMP 2014. Milan, Italy.

Boudreau BP, 1997. Diagenetic models and their implementation: modelling transport and reactions in aquatic sediments. Springer, New York, USA. 428 pp.

Burdige D J, 2006. Geochemistry of marine sediments. Princeton University Press, Princeton, USA. DOI: https://doi.org/10.1515/9780691216096

Brand A, Müller B, Wüest A, et al., 2007. Microsensor for in situ flow measurements in benthic boundary layers at submillimeter resolution with extremely slow flow. Limnology and Oceanography: Methods. 5:185-91. DOI: https://doi.org/10.4319/lom.2007.5.185

Cermelj B, Bertuzzi A, Faganeli J, 1997. Modelling of pore water nutrient distribution and benthic fluxes in shallow coastal waters Gulf of Trieste, northern Adriatic. Water Air Soil Pollut. 99:435-44. DOI: https://doi.org/10.1023/A:1018391423286

Cermelj B, Ogrinc N, Faganeli J, 2001. Anoxic mineralization of biogenic debris in near-shore marine sediments Gulf of Trieste, northern Adriatic, The Science of the Total Environment. 266:143-52. DOI: https://doi.org/10.1016/S0048-9697(00)00741-5

Ciceri G, Maran C, Martinotti W, Queirazza,G, 1992. Geochemical cycling of heavy metals in a marine coastal area: benthic flux determination from pore water profiles and in situ measurements using benthic chambers. Hydrobiologia. 235:501-17. DOI: https://doi.org/10.1007/978-94-011-2783-7_43

Cosoli S, Ličer M, Vodopivec M, Malačič V, 2013. Surface circulation in the Gulf of Trieste (northern Adriatic Sea) from radar, model, and ADCP comparisons. Journal of Geophysical Research: Oceans. 118:6183-200. DOI: https://doi.org/10.1002/2013JC009261

Covelli S, Emili A, Acquavita A, et al., 2011. Benthic biogeochemical cycling of mercury in two contaminated northern Adriatic coastal lagoons Continental Shelf Research. 31:1777-89. DOI: https://doi.org/10.1016/j.csr.2011.08.005

Covelli S, Faganeli J, De Vittor C, et al., 2008. Benthic fluxes of mercury species in a lagoon environment (Grado Lagoon, Northern Adriatic Sea, Italy) Applied Geochemistry. 23:529-46 DOI: https://doi.org/10.1016/j.apgeochem.2007.12.011

Covelli S, Faganeli J, Horvat M, Brambati A, 1999. Porewater distribution and benthic flux measurements of mercury and methylmercury in the Gulf of Trieste (Northern Adriatic Sea) Estuarine, Coastal and Shelf Science. 48:415-28. DOI: https://doi.org/10.1006/ecss.1999.0466

Cozzi S, Ibáñez C, Lazar L, et al., 2019. Flow Regime and Nutrient-Loading Trends from the Largest South European Watersheds: Implications for the Productivity of Mediterranean and Black Sea’s Coastal Areas, Water. 11:1-27. DOI: https://doi.org/10.3390/w11010001

De Vittor C, Faganeli J, Emili A, et al., 2012. Benthic fluxes of oxygen, carbon and nutrients in the Marano and Grado Lagoon (northern Adriatic Sea, Italy) Estuarine, Coastal and Shelf Science. 113:57-70. DOI: https://doi.org/10.1016/j.ecss.2012.03.031

Djakovac T, Supić N, Aubry FB, et al., 2015. Mechanisms of hypoxia frequency changes in the northern Adriatic Sea during the period 1972–2012. Journal of Marine Systems. 141:179-89. DOI: https://doi.org/10.1016/j.jmarsys.2014.08.001

Emili A, Carrasco L, Acquavita A, Covelli S, 2014. A laboratory-incubated redox oscillation experiment to investigate Hg fluxes from highly contaminated coastal marine sediments (Gulf of Trieste, Northern Adriatic Sea) Environmental Science and Pollution Research. 21:4124-33. DOI: https://doi.org/10.1007/s11356-013-2225-5

Emili A, Koron N, Covelli S, et al., 2011. Does anoxia affect mercury cycling at the sediment–water interface in the Gulf of Trieste (northern Adriatic Sea)? Incubation experiments using benthic flux chambers Applied Geochemistry. 26:194-204. DOI: https://doi.org/10.1016/j.apgeochem.2010.11.019

Epping EH, Helder W, 1997. Oxygen budgets calculated fromin situ oxygen microprofiles for Northern Adriatic sediments. Continental Shelf Research. 17:1737-64. DOI: https://doi.org/10.1016/S0278-4343(97)00039-3

Esposito V, Andaloro F, Canese S, et al., 2018. Exceptional discovery of a shallow-water hydrothermal site in the SW area of Basiluzzo islet (Aeolian archipelago, South Tyrrhenian Sea): An environment to preserve. PloS one. 13:e0190710. DOI: https://doi.org/10.1371/journal.pone.0190710

Frignani M, Langone L, Ravaioli M, et al., 2005. Fine‐sediment mass balance in the western Adriatic continental shelf over a century time scale. Marine Geology. 222:113–33. DOI: https://doi.org/10.1016/j.margeo.2005.06.016

Frascari F, Bergamini MC, Spagnoli F, Marcaccio M, 1995. Effetti sull’ambiente marino della Piattaforma Antares. Indagini sui processi geochimico-sedimentologici. GEDA/AMBI - AGIP, Milano (Italy), CEOM-DOC-A160-011.

Frascari F, Spagnoli F, Marcaccio M, Giordano P, 2006. Anomalous Po River flood event effects on sediments and the water column of the northwestern Adriatic Sea. Climate Research. 31:151-65. DOI: https://doi.org/10.3354/cr031151

Froelich P, Klinkhammer GP, Bender ML, Luedtke N A, Heath G R, Cullen D, Maynard V, 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochimica et cosmochimica acta, 43(7), 1075-1090. DOI: https://doi.org/10.1016/0016-7037(79)90095-4

Giani M, Berto D, Rampazzo F, et al., (2009). Origin of sedimentary organic matter in the north‐western Adriatic Sea. Estuarine, Coastal and Shelf Science. 84:573–83. DOI: https://doi.org/10.1016/j.ecss.2009.07.031

Giani M, Savelli F, Boldrin A, 2003. Temporal variability of particulate organic carbon, nitrogen and phosphorus in the northern Adriatic Sea. Hydrobiologia. 494:319–25. DOI: https://doi.org/10.1007/978-94-017-3366-3_44

Giordani P, Balboni V, Hammond DE, et al., 1996. Benthic mineralization: temporal variability and coupling to water column protiction. In: Price N.B. (Editor) EUROMARGE-AS Final Report, MAST II Programme, EU, pp. 208-218.

Giordani P, Balboni V, Miserocchi S, et al., 1992. STEP, Adria Cruise. Cruise report. IGM-CNR, pp. 46.

Giordani P, Donnelly A, Herbert RA, Seritti A, Balboni V, Del Vecchio R, Miserocchi S, Sorgente D, Vitale F, Nannicini L, 1996a. Assessing diagenetic efficiency in biogeochemical cycling: Results from laboratory incubation experiments. In: Price N.B. (Editor) EUROMARGE-AS Final Report, MAST II Programme, EU, 208-218.

Giordani P, Hammond DE, 1985. Techniques for measuring benthic fluxes of 222Rn and nutrients in coastal waters. Technical Report n.20, IGM-CNR, pp. 33.

Giordani P, Hammond DE, Berelson WM, et al., 1992. Benthic fluxes and nutrient budgets for sediments in the Northern Adriatic Sea: burial and recycling efficiencies. In Marine coastal eutrophication (pp. 251-275). Elsevier, Amsterdam, The Netherlands. DOI: https://doi.org/10.1016/B978-0-444-89990-3.50025-0

Giordani P, Miserocchi S, Balboni V, et al., 1994. EMAS 94 cruise report. Results presented at the MAST Workshop, Barcellona. Technical report n. 30. IGM-CNR Bologna, Italy.

Hammond DE, Cummins KM, McManus J, et al., 2004. Methods for measuring benthic nutrient flux on the California Margin: Comparing shipboard core incubations to in situ lander results. Limnol. and Oceanog.: Methods. 2:146-59. DOI: https://doi.org/10.4319/lom.2004.2.146

Hammond DE, Fuller C, Harmon D, et al., 1985. Benthic fluxes in San Francisco Bay. Hydrobiologia. 129:69-90. DOI: https://doi.org/10.1007/BF00048688

Hammond DE, Giordani P, Berelson WM, Poletti R, 1999. Diagenesis of carbon and nutrients and benthic exchange in sediments of the Northern Adriatic Sea. Marine Chemistry. 66:53-79. DOI: https://doi.org/10.1016/S0304-4203(99)00024-9

Hammond DE, McManus J, Berelson WM, 1997. Early diagenesis of organic material in equatorial Pacific sediments. Stoichiometry and kinetics Oceanographic Literature Review. 5:458.

Hassoun AER, Bantelman A, Canu D, et al., 2022. Ocean acidification research in the Mediterranean Sea: Status, trends and next steps. Front. Mar. Sci. 9. DOI: https://doi.org/10.3389/fmars.2022.892670

Hopkinson Jr. CS, Smith EM, 2005. Estuarine respiration: an overview of benthic, pelagic, and whole system respiration. In P.A. del Giorgio, P.J. Williams (Eds.), Respiration in aquatic systems (pp. 122–146). Oxford, UK: Oxford University Press. DOI: https://doi.org/10.1093/acprof:oso/9780198527084.003.0008

Joye SB, Anderson IC, 2008. Nitrogen cycling in coastal sediments. In D.G. Capone, D.A. Bronk, M.R. Mulholland, & E.J. Carpenter (Eds.), Nitrogen in the marine environment (2nd edn., pp. 867–915). Amsterdam, The Netherlands: Elsevier. DOI: https://doi.org/10.1016/B978-0-12-372522-6.00019-0

Lalonde K, Alfonso M, Alexandre O, Ge´linas Y, 2012. Preservation of organic matter in sediments promoted by iron. Nature. 483:198-200. DOI: https://doi.org/10.1038/nature10855

Lei P, Chen M, Rong N, et al., 2023. A passive sampler for synchronously measuring inorganic and organic pollutants in sediment porewater: Configuration and field application. Journal of Environm. Sciences. 136:201-12. DOI: https://doi.org/10.1016/j.jes.2023.02.019

Li Y, Gregory S, 1974. Diffusion of ions in sea-water and in deep-sea sediments. Geoch. Cosmoch. Acta. 38:703-14. DOI: https://doi.org/10.1016/0016-7037(74)90145-8

Magagnoli A, Mengoli M, 1995. Carotiere a gravità SW-104. Rapporto Tecnico CNR 27.pp. 45.

Milucka J, Ferdelman TG, Polerecky L, et al., 2012. Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature. 491:541-6. DOI: https://doi.org/10.1038/nature11656

Middelburg JJ, Levin LA, 2009. Coastal hypoxia and sediment biogeochemistry. Biogeosciences. 6:1273–93. DOI: https://doi.org/10.5194/bg-6-1273-2009

Morse JW, Boland G, Rowe GT, 1999. A gilled benthic chamber for extended measurement of sediment-water fluxes. Marine Chemistry. 66:225-30. DOI: https://doi.org/10.1016/S0304-4203(99)00032-8

Ogorelec B, Misic M, Faganeli J, 1991. Marine geology of the Gulf of Trieste (northern Adriatic): Sedimentological aspects. Marine Geology. 99:79–92. DOI: https://doi.org/10.1016/0025-3227(91)90084-H

Ogrinc N, Faganeli J, 2006. Phosphorus regeneration and burial in near-shore marine sediments (the Gulf of Trieste, northern Adriatic Sea) Estuarine, Coastal and Shelf Science. 67:579-88. DOI: https://doi.org/10.1016/j.ecss.2005.12.016

Ogrinc N, Fontolan G, Faganeli J, Covell S, 2005. Carbon and nitrogen isotope compositions of organic matter in coastal marine sediments (the Gulf of Trieste, N Adriatic Sea): indicators of sources and preservation. Marine Chemistry. 95:163-81. DOI: https://doi.org/10.1016/j.marchem.2004.09.003

Pavoni E, Petranich E, Signore S, et al., 2023. Fluxes of settling sediment particles and associated mercury in a coastal environment contaminated by past mining (Gulf of Trieste, northern Adriatic Sea). Journal of Soils and Sediments. 2023:1-12. DOI: https://doi.org/10.1007/s11368-023-03451-9

Petranich E, Covelli S, Acquavita A, et al., 2018. Benthic nutrient cycling at the sediment-water interface in a lagoon fish farming system (northern Adriatic Sea, Italy) Science of the Total Environment. 644:137-49. DOI: https://doi.org/10.1016/j.scitotenv.2018.06.310

Petranich E, Crosera M, Pavoni E, et al., 2021. Behaviour of Metal(loid)s at the Sediment-Water Interface in an Aquaculture Lagoon Environment (Grado Lagoon, Northern Adriatic Sea, Italy). Appl. Sci. 11:2350. DOI: https://doi.org/10.3390/app11052350

Price PB, Sowers T, 2004. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proceedings of the National Academy of Sciences. 101:4631-6. DOI: https://doi.org/10.1073/pnas.0400522101

Price RE, LaRowe DE, Italiano F, et al., 2015. Subsurface hydrothermal processes and the bioenergetics of chemolithoautotrophy at the shallow-sea vents off Panarea Island (Italy). Chemical Geology. 407:21-45. DOI: https://doi.org/10.1016/j.chemgeo.2015.04.011

Pugnetti A, Acri F, Alberighi L, et al., 2004. Phytoplankton photosynthetic activity and growth rates in the NW Adriatic Sea. Chemistry and Ecology. 20:399–409. DOI: https://doi.org/10.1080/02757540412331294902

Sturdivant SK, Brush MJ, Diaz RJ, 2013. Modeling the effect of hypoxia on macrobenthos production in the lower Rappahannock River, Chesapeake Bay, USA. PLOS ONE. 8:e84140. DOI: https://doi.org/10.1371/journal.pone.0084140

Rovere M, Mercorella A, Frapiccini E, et al., 2020. Geochemical and geophysical monitoring of hydrocarbon seepage in the Adriatic Sea. Sensors. 20:1504. DOI: https://doi.org/10.3390/s20051504

Savini A, Malinverno E, Etiope G, et al., 2009 - Shallow seep-related seafloor features along the Malta Plateau (Sicily channel-Mediterranean Sea): morphologies and geo-environmental control of their distribution. Marine and Petroleum Geology. 26:1831-48. DOI: https://doi.org/10.1016/j.marpetgeo.2009.04.003

Spagnoli F, Bergamini MC, 1997. Water-sediment exchange of nutrients during early diagenesis and resuspension of anoxic sediments from the northern Adriatic Sea shelf. Water, Air and Soil Poll. 99:541-56. DOI: https://doi.org/10.1007/978-94-011-5552-6_56

Spagnoli F, Dell'Anno A, De Marco A, et al., 2010 - Biogeochemistry, grain size and mineralogy of the central and southern Adriatic Sea sediments: a review. Chemistry and Ecology. 26:19-44. DOI: https://doi.org/10.1080/02757541003689829

Spagnoli F, De Marco R, Giuliani G, et al., 2020. Dissolved heavy metal fluxes at sediment-water interface in polluted sediments of the Adriatic Sea, EGU General Assembly 2020. EGU2020-19366. DOI: https://doi.org/10.5194/egusphere-egu2020-19366

Spagnoli F, Dinelli E, Giordano P, et al., 2014. Sedimentological, biogeochemical and mineralogical facies of Northern and Central Western Adriatic Sea. Journal of Marine Systems. 139:183-203. DOI: https://doi.org/10.1016/j.jmarsys.2014.05.021

Spagnoli F, Gabriella B, Capaccioni B, Giordano P, 2013. Benthic Nutrient Fluxes in Central and Southern Adriatic and Ionian Seas. 40th CIESM Congress Proceedings. Rapp. Comm. Int. Mer Médit. 40:266.

Spagnoli F, Giordano P, Ravaioli M, 2018. Marine dissolved Carbon fluxes at sediment-water interface and early diagenesis processes. Libro degli abstract. 1° workshop nazionale: Terra, vita e clima Il ciclo del Carbonio. Area della ricerca CNR Pisa, 22 - 23 novembre 2018, p. 65.

Spagnoli F, Giuliani G, Martinotti V, et al., 2018. AMERIGO and CBA: a new lander and a new automatic benthic chamber for dissolved benthic flux measurements. In 2018 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea) (pp. 206-211). DOI: https://doi.org/10.1109/MetroSea.2018.8657889

Spagnoli F, Kaberi H, Giordano P, et al., 2015. Benthic fluxes of dissolved heavy metals in polluted sediments of the Adriatic Sea. Scientific Conference proceedings. Scientific Conference: Integrated Marine Research in the Mediterranean and the Black Sea. E. Papathanassiou, N. Streftaris & L. Giannoudi, Editors, pp. 301-302. 399 pp.

Spagnoli F, Penna P, Giuliani G, et al., 2019. The AMERIGO Lander and the Automatic Benthic Chamber (CBA): Two New Instruments to Measure Benthic Fluxes of Dissolved Chemical Species. Sensors, 19(11), 2632. pp. 1-30. DOI: https://doi.org/10.3390/s19112632

Tahey TM, Duineveld GCA, DeWilde PAWJ, et al., 1996. Sediment O-2 demand, density and biomass of the benthos and phytopigments along the northwestern Adriatic coast: The extent of Po enrichment. Oceanologica Acta. 19:117-30.

Tengberg A, De Bovee F, Hall P, et al., 1995. Benthic chamber and profiling landers in oceanography - A reviewof design, technical solutions and functioning. Prog. Oceanog. 35:253-94. DOI: https://doi.org/10.1016/0079-6611(95)00009-6

Tesi T, Miserocchi S, Langone L, et al., 2006. Sources, fate and distribution of organic matter on the western Adriatic continental shelf, Italy. Water, Air, and Soil Pollution: Focus. 6:593–603. DOI: https://doi.org/10.1007/s11267-006-9044-3

Testa J, Faganeli J, Giani M, et al., 2021. Advances in our understanding of pelagic-benthic coupling. In: Malone T., Malej A., Faganeli J., (Eds) Coastal Ecosystems in Transition: A Comparative Analysis of the Northern Adriatic and Chesapeake Bay, Geophysical Monograph. 256:147-75. DOI: https://doi.org/10.1002/9781119543626.ch8

Viel M, Barbanti A, Langone L, et al., 1991. Nutrient profiles in the pore water of a deltaic lagoon: methodological considerations and evaluation of benthic fluxes. Estuarine, Coastal and Shelf Science, 33:361-82. DOI: https://doi.org/10.1016/0272-7714(91)90063-H

Viollier E, Rabouille C, Apitz SE, et al., 2003. Benthic biogeochemistry: state of the art technologies and guidelines for the future of in situ survey. J. Exp. Mar. Biol. Ecol. 285:5-31. DOI: https://doi.org/10.1016/S0022-0981(02)00517-8

Webster IT, Teasdalev PR, Grigg NJ, 1998. Theoretical and experimental analysis of peeper equilibration dynamics. Environ. Sci. Technol. 32:1727–33. DOI: https://doi.org/10.1021/es970815g

Weston NB, Porubsky WP, Samarkin VA, et al., 2006. Porewater stoichiometry of terminal metabolic products, sulfate, and dissolved organic carbon and nitrogen in estuarine intertidal creek-bank sediments. Biogeochemistry. 77:375-408. DOI: https://doi.org/10.1007/s10533-005-1640-1

Westrich JT, Berner RA, 1984. The role of sedimentary organic matter in bacterial sulfate reduction: The G model tested 1. Limnology and Oceanog. 29:236-49. DOI: https://doi.org/10.4319/lo.1984.29.2.0236

Westrich JT, Berner R A, 1988. The effect of temperature on rates of sulfate reduction in marine sediments. Geomicrobiology Journal. 6:99-117. DOI: https://doi.org/10.1080/01490458809377828

Zago C, Capodaglio G, Ceradini S, et al., 2000. Benthic fluxes of cadmium, lead, copper and nitrogen species in the northern Adriatic Sea in front of the River Po outflow, Italy. Science of the Total Environ. 246:121-37. DOI: https://doi.org/10.1016/S0048-9697(99)00421-0

Spagnoli, F., & Ravaioli, M. (2023). Dissolved fluxes of nutrients and carbon at the sediment-water interface in the Adriatic Sea: review of early data and methods from the Italian National Research Council (CNR). Advances in Oceanography and Limnology, 14(1). https://doi.org/10.4081/aiol.2023.11094

Downloads

Download data is not yet available.

Citations