Effect of physical activity on long COVID fatigue: an unsolved enigma


Submitted: 4 August 2023
Accepted: 19 August 2023
Published: 4 September 2023
Abstract Views: 1020
PDF: 315
HTML: 35
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

  • Francesco Coscia Sports Medicine Service of the San Candido-Innichen and Brunico-Bruneck Hospitals, Bolzano-Bozen, San Candido, Italy.
  • Ester Sara Di Filippo Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy; IIM-Interuniversity Institute of Myology, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy. https://orcid.org/0000-0001-9531-7788
  • Paola Virginia Gigliotti Laboratory of Sport Physiology San Candido-Innichen, University of Perugia, San Candido, Italy.
  • Giorgio Fano Illic IIM-Interuniversity Institute of Myology, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy; Campus of Free University of Alcatraz, Free University of Alcatraz, Santa Cristina di Gubbio, Gubbio, Italy; A&C M-C Foundation for Translational Myology, Padova, Italy. https://orcid.org/0000-0002-8753-5707

Covid-19 disease is well documented and often the most common symptoms include myalgia and muscle fatigue. Approximately 10% of those infected complain of persistent fatigue even many months after the end of the acute phase of the disease. This gives rise to a condition different from the previous one and commonly known as 'post-acute COVID-19 syndrome' or simply Long-COVID. Although the origin of muscle fatigue is multifactorial, the state of prolonged fatigue observed in the Long-COVID syndrome suggests the existence of a possible state of atrophy or rather acute sarcopenia. Under these conditions, the use of physical activity programs can effectively counteract the state of atrophy underlying the fatigue phenomena observed. If this is also the situation during the Long-COVID, the muscular symptom should be positively influenced by the administration of programmed physical activity cycles. In fact, in patients with Long-COVID, the few published papers seem to indicate that patients who are physically active and who make an effort to engage in physical activity even during the illness have decreased duration and intensity of the illness. However, analysis of the studies in the literature also suggests that a small percentage of people with Long-COVID do not appear to benefit from the application of physical activity programs, so further studies on homogeneous samples are needed to provide a firm answer to the question: can planned physical activity help patients during the pathological course of Long-COVID?


Gupta A, Madhavan MV, Sehgal K, Nair N, Mahajan S, Sehrawat TS, Bikdeli B, Ahluwalia N, Ausiello JC, Wan EY, Freedberg DE, Kirtane AJ, Parikh SA, Maurer MS, Nordvig AS, Accili D, Bathon JM, Mohan S, Bauer KA, Leon MB, Krumholz HM, Uriel N, Mehra MR, Elkind MSV, Stone GW, Schwartz A, Ho DD, Bilezikian JP, Landry DW. Extrapulmonary manifestations of COVID-19. Nat Med. 2020 Jul;26(7):1017-1032. Epub 2020 Jul 10. PMID: 32651579. DOI: https://doi.org/10.1038/s41591-020-0968-3

Nasserie T, Hittle M, Goodman SN. Assessment of the Frequency and Variety of Persistent Symptoms Among Patients With COVID-19: A Systematic Review. JAMA Netw Open. 2021 May 3;4(5):e2111417. 2021.11417. PMID: 34037731; PMCID: PMC8155823. DOI: https://doi.org/10.1001/jamanetworkopen.2021.11417

Nalbandian A, Sehgal K, Gupta A, Madhavan MV, McGroder C, Stevens JS, Cook JR, Nordvig AS, Shalev D, Sehrawat TS, Ahluwalia N, Bikdeli B, Dietz D, Der-Nigoghossian C, Liyanage-Don N, Rosner GF, Bernstein EJ, Mohan S, Beckley AA, Seres DS, Choueiri TK, Uriel N, Ausiello JC, Accili D, Freedberg DE, Baldwin M, Schwartz A, Brodie D, Garcia CK, Elkind MSV, Connors JM, Bilezikian JP, Landry DW, Wan EY. Post-acute COVID-19 syndrome. Nat Med. 2021 Apr;27(4):601-615. Epub 2021 Mar 22. PMID: 33753937; PMCID: PMC8893149. DOI: https://doi.org/10.1038/s41591-021-01283-z

Choutka J, Jansari V, Hornig M, Iwasaki A. Unexplained post-acute infection syndromes. Nat Med. 2022 May;28(5):911-923. Epub 2022 May 18. Erratum in: Nat Med. 2022 Aug;28(8):1723. PMID: 35585196. DOI: https://doi.org/10.1038/s41591-022-01810-6

Honarmand A, Sheybani F, Aflatoonian E, Saberinia A. COVID-19 patients at referral to hospital during the first peak of disease: Common clinical findings including myalgia and fatigue. Eur J Transl Myol. 2022 Aug 12;32(3):10731. PMID: 36036352; PMCID: PMC9580529. DOI: https://doi.org/10.4081/ejtm.2022.10731

Sudre CH, Murray B, Varsavsky T, Graham MS, Penfold RS, Bowyer RC, Pujol JC, Klaser K, Antonelli M, Canas LS, Molteni E, Modat M, Jorge Cardoso M, May A, Ganesh S, Davies R, Nguyen LH, Drew DA, Astley CM, Joshi AD, Merino J, Tsereteli N, Fall T, Gomez MF, Duncan EL, Menni C, Williams FMK, Franks PW, Chan AT, Wolf J, Ourselin S, Spector T, Steves CJ. Attributes and predictors of long COVID. Nat Med. 2021 Apr;27(4):626-631. Epub 2021 Mar 10. Erratum in: Nat Med. 2021 Jun;27(6):1116. PMID: 33692530; PMCID: PMC7611399. DOI: https://doi.org/10.1038/s41591-021-01292-y

Kirwan R, McCullough D, Butler T, Perez de Heredia F, Davies IG, Stewart C. Sarcopenia during COVID-19 lockdown restrictions: long-term health effects of short-term muscle loss. GeroScience. 2020;42(6):1547-1578. DOI: https://doi.org/10.1007/s11357-020-00272-3

Constantin-Teodosiu D, Constantin D. Molecular Mechanisms of Muscle Fatigue. Int J Mol Sci. 2021 Oct 27;22(21):11587. PMID: 34769017; PMCID: PMC8584022. DOI: https://doi.org/10.3390/ijms222111587

Romanello V, Sandri M. The connection between the dynamic remodeling of the mitochondrial network and the regulation of muscle mass. Cell Mol Life Sci. 2021 Feb;78(4):1305-1328. Epub 2020 Oct 19. PMID: 33078210; PMCID: PMC7904552. DOI: https://doi.org/10.1007/s00018-020-03662-0

Newman AB, Kupelian V, Visser M, et al. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J Gerontol A Biol Sci Med Sci. 2006;61(1):72-77. DOI: https://doi.org/10.1093/gerona/61.1.72

Piotrowicz K, Gąsowski J, Michel JP, Veronese N. Post-COVID-19 acute sarcopenia: physiopathology and management. Aging Clin Exp Res. 2021 Oct;33(10):2887-2898. Epub 2021 Jul 30. PMID: 34328636; PMCID: PMC8323089. DOI: https://doi.org/10.1007/s40520-021-01942-8

Bao W, Sun Y, Zhang T, Zou L, Wu X, Wang D, Chen Z. Exercise Programs for Muscle Mass, Muscle Strength and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis. Aging Dis. 2020 Jul 23;11(4):863-873. PMID: 32765951; PMCID: PMC7390512. DOI: https://doi.org/10.14336/AD.2019.1012

Matusewicz L, Golec M, Czogalla A, Kuliczkowski K, Konka A, Zembala-John J, Sikorski AF. COVID-19 therapies: do we see substantial progress? Cell Mol Biol Lett. 2022 May 31;27(1):42. PMID: 35641916; PMCID: PMC9152818. DOI: https://doi.org/10.1186/s11658-022-00341-9

Thompson WR, Sallis R, Joy E, Jaworski CA, Stuhr RM, Trilk JL. Exercise Is Medicine. Am J Lifestyle Med. 2020 Apr 22;14(5):511-523. PMID: 32922236; PMCID: PMC7444006. DOI: https://doi.org/10.1177/1559827620912192

van der Feltz-Cornelis CM, Sweetman J, Edwards M, Gall N, Gilligan J, Hayle S, Kaul A, Moriarty AS, Perros P, Sampford J, Smith N, Elfeddali I, Varley D, Gower J. Identifying the top research priorities in medically not yet explained symptoms (MNYES): a James Lind Alliance priority setting partnership. BMJ Open. 2022 Jul 1;12(7):e061263. PMID: 35777869; PMCID: PMC9252198. DOI: https://doi.org/10.1136/bmjopen-2022-061263

Gonzalez A, Abrigo J, Achiardi O, Simon F, Cabello-Verrugio C. Intensive care unit-acquired weakness: A review from molecular mechanisms to its impact in COVID-2019. Eur J Transl Myol. 2022 Aug 26;32(3):10511. PMID: 36036350; PMCID: PMC9580540. DOI: https://doi.org/10.4081/ejtm.2022.10511

Kirmayer LJ, Groleau D, Looper KJ, Dao MD. Explaining medically unexplained symptoms. Can J Psychiatry. 2004 Oct;49(10):663-72. PMID: 15560312. DOI: https://doi.org/10.1177/070674370404901003

Alkodaymi MS, Omrani OA, Fawzy NA, Shaar BA, Almamlouk R, Riaz M, Obeidat M, Obeidat Y, Gerberi D, Taha RM, Kashour Z, Kashour T, Berbari EF, Alkattan K, Tleyjeh IM. Prevalence of post-acute COVID-19 syndrome symptoms at different follow-up periods: a systematic review and meta-analysis. Clin Microbiol Infect. 2022 May;28(5):657-666. Epub 2022 Feb 3. PMID: 35124265; PMCID: PMC8812092.. DOI: https://doi.org/10.1016/j.cmi.2022.01.014

Mehandru S, Merad M. Pathological sequelae of long-haul COVID. Nat Immunol. 2022 Feb;23(2):194-202. Epub 2022 Feb 1. PMID: 35105985; PMCID: PMC9127978. DOI: https://doi.org/10.1038/s41590-021-01104-y

Fawzy NA, Abou Shaar B, Taha RM, Arabi TZ, Sabbah BN, Alkodaymi MS, Omrani OA, Makhzoum T, Almahfoudh NE, Al-Hammad QA, Hejazi W, Obeidat Y, Osman N, Al-Kattan KM, Berbari EF, Tleyjeh IM. A systematic review of trials currently investigating therapeutic modalities for post-acute COVID-19 syndrome and registered on WHO International Clinical Trials Platform. Clin Microbiol Infect. 2023 May;29(5):570-577. Epub 2023 Jan 13. PMID: 36642173; PMCID: PMC9837206. DOI: https://doi.org/10.1016/j.cmi.2023.01.007

Global Burden of Disease Long COVID Collaborators, Wulf Hanson S, Abbafati C, et al. Estimated Global Proportions of Individuals With Persistent Fatigue, Cognitive, and Respiratory Symptom Clusters Following Symptomatic COVID-19 in 2020 and 2021. JAMA. 2022 Oct 25;328(16):1604-1615. PMID: 36215063; PMCID: PMC9552043

Sherif ZA, Gomez CR, Connors TJ, Henrich TJ, Reeves WB; RECOVER Mechanistic Pathway Task Force. Pathogenic mechanisms of post-acute sequelae of SARS-CoV-2 infection (PASC). Elife. 2023 Mar 22;12:e86002. PMID: 36947108; PMCID: PMC10032659. DOI: https://doi.org/10.7554/eLife.86002

Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023 Mar;21(3):133-146. Epub 2023 Jan 13. Erratum in: Nat Rev Microbiol. 2023 Jun;21(6):408. PMID: 36639608; PMCID: PMC9839201. DOI: https://doi.org/10.1038/s41579-022-00846-2

de Oliveira Almeida K, Nogueira Alves IG, de Queiroz RS, de Castro MR, Gomes VA, Santos Fontoura FC, Brites C, Neto MG. A systematic review on physical function, activities of daily living and health-related quality of life in COVID-19 survivors. Chronic Illn. 2023 Jun;19(2):279-303. Epub 2022 Apr 11. PMID: 35404175; PMCID: PMC9006095. DOI: https://doi.org/10.1177/17423953221089309

Williamson EJ, Walker AJ, Bhaskaran K, Bacon S, Bates C, Morton CE, Curtis HJ, Mehrkar A, Evans D, Inglesby P, Cockburn J, McDonald HI, MacKenna B, Tomlinson L, Douglas IJ, Rentsch CT, Mathur R, Wong AYS, Grieve R, Harrison D, Forbes H, Schultze A, Croker R, Parry J, Hester F, Harper S, Perera R, Evans SJW, Smeeth L, Goldacre B. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020 Aug;584(7821):430-436. Epub 2020 Jul 8. PMID: 32640463; PMCID: PMC7611074. DOI: https://doi.org/10.1038/s41586-020-2521-4

Kouhpayeh H. Clinical features predicting COVID-19 mortality risk. Eur J Transl Myol. 2022 Apr 12;32(2):10268. PMID: 35421918; PMCID: PMC9295175. DOI: https://doi.org/10.4081/ejtm.2022.10268

Fu YW, Xu HS, Liu SJ. COVID-19 and neurodegenerative diseases. Eur Rev Med Pharmacol Sci. 2022 Jun;26(12):4535-4544. PMID: 35776055.

Denaro CA, Haloush YI, Hsiao SY, Orgera JJ, Osorio T, Riggs LM, Sassaman JW, Williams SA, Monte Carlo AR 3rd, Da Costa RT, Grigoriev A, Solesio ME. COVID-19 and neurodegeneration: The mitochondrial connection. Aging Cell. 2022 Nov;21(11):e13727. Epub 2022 Oct 11. PMID: 36219531; PMCID: PMC9649608. DOI: https://doi.org/10.1111/acel.13727

Hull JH, Wootten M, Moghal M, Heron N, Martin R, Walsted ES, Biswas A, Loosemore M, Elliott N, Ranson C. Clinical patterns, recovery time and prolonged impact of COVID-19 illness in international athletes: the UK experience. Br J Sports Med. 2022 Jan;56(1):4-11. Epub 2021 Aug 2. PMID: 34340972; PMCID: PMC8331321. DOI: https://doi.org/10.1136/bjsports-2021-104392

Wezenbeek E, Denolf S, Willems TM, Pieters D, Bourgois JG, Philippaerts RM, De Winne B, Wieme M, Van Hecke R, Markey L, Schuermans J, Witvrouw E, Verstockt S. Association between SARS-COV-2 infection and muscle strain injury occurrence in elite male football players: a prospective study of 29 weeks including three teams from the Belgian professional football league. Br J Sports Med. 2022 Apr 29:bjsports-2021-104595. Epub ahead of print. PMID: 35487684; PMCID: PMC9062454. DOI: https://doi.org/10.1136/bjsports-2021-104595

Zsichla L, Müller V. Risk Factors of Severe COVID-19: A Review of Host, Viral and Environmental Factors. Viruses. 2023 Jan 7;15(1):175. PMID: 36680215; PMCID: PMC9863423. DOI: https://doi.org/10.3390/v15010175

Wang PY, Li Y, Wang Q. Sarcopenia: An underlying treatment target during the COVID-19 pandemic. Nutrition. 2021 Apr;84:111104. Epub 2020 Dec 5. PMID: 33421827; PMCID: PMC7833321. DOI: https://doi.org/10.1016/j.nut.2020.111104

Krzywański J, Mikulski T, Krysztofiak H, Pokrywka A, Młyńczak M, Małek ŁA, Kwiatkowska D, Kuchar E. Elite athletes with COVID-19 - Predictors of the course of disease. J Sci Med Sport. 2022 Jan;25(1):9-14. Epub 2021 Jul 14. PMID: 34334321; PMCID: PMC8277540. DOI: https://doi.org/10.1016/j.jsams.2021.07.003

Coscia F, Mancinelli R, Gigliotti PV, Checcaglini F, Fanò-Illic G. Physical Activity Effects on Muscle Fatigue in Sport in Active Adults with Long COVID-19: An Observational Study. Diagnostics (Basel). 2023 Apr 3;13(7):1336. PMID: 37046554; PMCID: PMC10093327. DOI: https://doi.org/10.3390/diagnostics13071336

Lemes IR, Smaira FI, Ribeiro WJD, Favero NK, Matos LDNJ, Pinto ALS, Dolan E, Gualano B; Coalition SPORT-COVID-19. Acute and post-acute COVID-19 presentations in athletes: a systematic review and meta-analysis. Br J Sports Med. 2022 Aug;56(16):941-947. Epub 2022 May 27. PMID: 35623887. DOI: https://doi.org/10.1136/bjsports-2022-105583

Petek BJ, Moulson N, Baggish AL, Kliethermes SA, Patel MR, Churchill TW, Harmon KG, Drezner JA; ORCCA Investigators. Prevalence and clinical implications of persistent or exertional cardiopulmonary symptoms following SARS-CoV-2 infection in 3597 collegiate athletes: a study from the Outcomes Registry for Cardiac Conditions in Athletes (ORCCA). Br J Sports Med. 2022 Aug;56(16):913-918. Epub 2021 Nov 1. PMID: 34725052; PMCID: PMC8561826. DOI: https://doi.org/10.1136/bjsports-2021-104644

Vollbracht C, Kraft K. Oxidative Stress and Hyper-Inflammation as Major Drivers of Severe COVID-19 and Long COVID: Implications for the Benefit of High-Dose Intravenous Vitamin C. Front Pharmacol. 2022 Apr 29;13:899198. PMID: 35571085; PMCID: PMC9100929. DOI: https://doi.org/10.3389/fphar.2022.899198

Moldogazieva NT, Mokhosoev IM, Feldman NB, Lutsenko SV. ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications. Free Radic Res. 2018 May;52(5):507-543. Epub 2018 Apr 19. PMID: 29589770. DOI: https://doi.org/10.1080/10715762.2018.1457217

Paul BD, Lemle MD, Komaroff AL, Snyder SH. Redox imbalance links COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome. Proc Natl Acad Sci U S A. 2021 Aug 24;118(34):e2024358118. PMID: 34400495; PMCID: PMC8403932. DOI: https://doi.org/10.1073/pnas.2024358118

Mohiuddin M, Kasahara K. The emerging role of oxidative stress in complications of COVID-19 and potential therapeutic approach to diminish oxidative stress. Respir Med. 2021 Oct;187:106605. Epub 2021 Sep 6. PMID: 34507024; PMCID: PMC8420129. DOI: https://doi.org/10.1016/j.rmed.2021.106605

Al-Hakeim HK, Al-Rubaye HT, Al-Hadrawi DS, Almulla AF, Maes M. Long-COVID post-viral chronic fatigue and affective symptoms are associated with oxidative damage, lowered antioxidant defenses and inflammation: a proof of concept and mechanism study. Mol Psychiatry. 2023 Feb;28(2):564-578. Epub 2022 Oct 24. PMID: 36280755; PMCID: PMC9589528. DOI: https://doi.org/10.1038/s41380-022-01836-9

Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ; HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020 Mar 28;395(10229):1033-1034. Epub 2020 Mar 16. PMID: 32192578; PMCID: PMC7270045. DOI: https://doi.org/10.1016/S0140-6736(20)30628-0

Laforge M, Elbim C, Frère C, Hémadi M, Massaad C, Nuss P, Benoliel JJ, Becker C. Tissue damage from neutrophil-induced oxidative stress in COVID-19. Nat Rev Immunol. 2020 Sep;20(9):515-516 Erratum in: Nat Rev Immunol. 2020 Aug 10. PMID: 32728221; PMCID: PMC7388427. DOI: https://doi.org/10.1038/s41577-020-0407-1

Soares MN, Eggelbusch M, Naddaf E, Gerrits KHL, van der Schaaf M, van den Borst B, Wiersinga WJ, van Vugt M, Weijs PJM, Murray AJ, Wüst RCI. Skeletal muscle alterations in patients with acute Covid-19 and post-acute sequelae of Covid-19. J Cachexia Sarcopenia Muscle. 2022 Feb;13(1):11-22. Epub 2022 Jan 7. PMID: 34997689; PMCID: PMC8818659. DOI: https://doi.org/10.1002/jcsm.12896

Al-Hakeim HK, Al-Rubaye HT, Almulla AF, Al-Hadrawi DS, Maes M. Chronic Fatigue, Depression and Anxiety Symptoms in Long COVID Are Strongly Predicted by Neuroimmune and Neuro-Oxidative Pathways Which Are Caused by the Inflammation during Acute Infection. J Clin Med. 2023 Jan 8;12(2):511. PMID: 36675440; PMCID: PMC9865328. DOI: https://doi.org/10.3390/jcm12020511

Matsuyama T, Yoshinaga SK, Shibue K, Mak TW. Comorbidity-associated glutamine deficiency is a predisposition to severe COVID-19. Cell Death Differ. 2021 Dec;28(12):3199-3213. Epub 2021 Oct 18. PMID: 34663907; PMCID: PMC8522258. DOI: https://doi.org/10.1038/s41418-021-00892-y

Biolo G, Di Girolamo FG, McDonnell A, Fiotti N, Mearelli F, Situlin R, Gonelli A, Dapas B, Giordano M, Lainscak M, Grassi G, Zauli G, Secchiero P, Mekjavic I. Effects of Hypoxia and Bed Rest on Markers of Cardiometabolic Risk: Compensatory Changes in Circulating TRAIL and Glutathione Redox Capacity. Front Physiol. 2018 Jul 30;9:1000. PMID: 30104982; PMCID: PMC6077233. DOI: https://doi.org/10.3389/fphys.2018.01000

Di Girolamo FG, Fiotti N, Sisto UG, Nunnari A, Colla S, Mearelli F, Vinci P, Schincariol P, Biolo G. Skeletal Muscle in Hypoxia and Inflammation: Insights on the COVID-19 Pandemic. Front Nutr. 2022 Apr 22;9:865402. PMID: 35529457; PMCID: PMC9072827. DOI: https://doi.org/10.3389/fnut.2022.865402

Fitts RH. Cellular mechanisms of muscle fatigue. Physiol Rev. 1994 Jan;74(1):49-94. PMID: 8295935. DOI: https://doi.org/10.1152/physrev.1994.74.1.49

Sartori R, Romanello V, Sandri M. Mechanisms of muscle atrophy and hypertrophy: implications in health and disease. Nat Commun. 2021 Jan 12;12(1):330. PMID: 33436614; PMCID: PMC7803748. DOI: https://doi.org/10.1038/s41467-020-20123-1

Komaroff AL, Lipkin WI. Insights from myalgic encephalomyelitis/chronic fatigue syndrome may help unravel the pathogenesis of postacute COVID-19 syndrome. Trends Mol Med. 2021 Sep;27(9):895-906. Epub 2021 Jun 7. PMID: 34175230; PMCID: PMC8180841. DOI: https://doi.org/10.1016/j.molmed.2021.06.002

Maes M, Al-Rubaye HT, Almulla AF, Al-Hadrawi DS, Stoyanova K, Kubera M, Al-Hakeim HK. Lowered Quality of Life in Long COVID Is Predicted by Affective Symptoms, Chronic Fatigue Syndrome, Inflammation and Neuroimmunotoxic Pathways. Int J Environ Res Public Health. 2022 Aug 19;19(16):10362. PMID: 36011997; PMCID: PMC9408685. DOI: https://doi.org/10.3390/ijerph191610362

Wirth KJ, Scheibenbogen C. Pathophysiology of skeletal muscle disturbances in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). J Transl Med. 2021 Apr 21;19(1):162. PMID: 33882940; PMCID: PMC8058748. DOI: https://doi.org/10.1186/s12967-021-02833-2

Wood E, Hall KH, Tate W. Role of mitochondria, oxidative stress and the response to antioxidants in myalgic encephalomyelitis/chronic fatigue syndrome: A possible approach to SARS-CoV-2 'long-haulers'? Chronic Dis Transl Med. 2021 Mar;7(1):14-26. Epub 2020 Nov 21. PMID: 33251031; PMCID: PMC7680046. DOI: https://doi.org/10.1016/j.cdtm.2020.11.002

Pietrangelo T, Fulle S, Coscia F, Gigliotti PV, Fanò-Illic G. Old muscle in young body: an aphorism describing the Chronic Fatigue Syndrome. Eur J Transl Myol. 2018 Sep 7;28(3):7688. PMID: 30344981; PMCID: PMC6176399. DOI: https://doi.org/10.4081/ejtm.2018.7688

Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020 Jul;21(7):363-383. Epub 2020 Mar 30. PMID: 32231263. DOI: https://doi.org/10.1038/s41580-020-0230-3

Di Filippo ES, Checcaglini F, Fanò-Illic G, Fulle S. H2O2/Ca2+/Zn2+ Complex Can Be Considered a “Collaborative Sensor” of the Mitochondrial Capacity? Antioxid Basel Switz. 2022;11(2):342. DOI: https://doi.org/10.3390/antiox11020342

Trinity JD, Craig JC, Fermoyle CC, McKenzie AI, Lewis MT, Park SH, Rondina MT, Richardson RS. Impact of presymptomatic COVID-19 on vascular and skeletal muscle function: a case study. J Appl Physiol (1985). 2021 Jun 1;130(6):1961-1970. Epub 2021 May 18. PMID: 34002634; PMCID: PMC8213510. DOI: https://doi.org/10.1152/japplphysiol.00236.2021

Mancinelli R, Checcaglini F, Coscia F, Gigliotti P, Fulle S, Fanò-Illic G. Biological Aspects of Selected Myokines in Skeletal Muscle: Focus on Aging. Int J Mol Sci. 2021 Aug 7;22(16):8520. PMID: 34445222; PMCID: PMC8395159. DOI: https://doi.org/10.3390/ijms22168520

Johann K, Kleinert M, Klaus S. The Role of GDF15 as a Myomitokine. Cells. 2021 Nov 3;10(11):2990. PMID: 34831213; PMCID: PMC8616340. DOI: https://doi.org/10.3390/cells10112990

Retornaz F, Rebaudet S, Stavris C, Jammes Y. Long-term neuromuscular consequences of SARS-Cov-2 and their similarities with myalgic encephalomyelitis/chronic fatigue syndrome: results of the retrospective CoLGEM study. J Transl Med. 2022 Sep 24;20(1):429. PMID: 36153556; PMCID: PMC9509619. DOI: https://doi.org/10.1186/s12967-022-03638-7

Li Y, Zhou W, Yang L, You R. Physiological and pathological regulation of ACE2, the SARS-CoV-2 receptor. Pharmacol Res. 2020 Jul;157:104833. Epub 2020 Apr 14. PMID: 32302706; PMCID: PMC7194807. DOI: https://doi.org/10.1016/j.phrs.2020.104833

De Giorgio MR, Di Noia S, Morciano C, Conte D. The impact of SARS-CoV-2 on skeletal muscles. Acta Myol. 2020 Dec 1;39(4):307-312. PMID: 33458586; PMCID: PMC7783438.

Jamilloux Y, Henry T, Belot A, Viel S, Fauter M, El Jammal T, Walzer T, François B, Sève P. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun Rev. 2020 Jul;19(7):102567. Epub 2020 May 4. PMID: 32376392; PMCID: PMC7196557. DOI: https://doi.org/10.1016/j.autrev.2020.102567

Nigro E, Polito R, Alfieri A, Mancini A, Imperlini E, Elce A, Krustrup P, Orrù S, Buono P, Daniele A. Molecular mechanisms involved in the positive effects of physical activity on coping with COVID-19. Eur J Appl Physiol. 2020 Dec;120(12):2569-2582. Epub 2020 Sep 3. PMID: 32885275; PMCID: PMC7471545. DOI: https://doi.org/10.1007/s00421-020-04484-5

Ajaz S, McPhail MJ, Singh KK, Mujib S, Trovato FM, Napoli S, Agarwal K. Mitochondrial metabolic manipulation by SARS-CoV-2 in peripheral blood mononuclear cells of patients with COVID-19. Am J Physiol Cell Physiol. 2021 Jan 1;320(1):C57-C65. Epub 2020 Nov 5. PMID: 33151090; PMCID: PMC7816428. DOI: https://doi.org/10.1152/ajpcell.00426.2020

Ferrandi PJ, Alway SE, Mohamed JS. The interaction between SARS-CoV-2 and ACE2 may have consequences for skeletal muscle viral susceptibility and myopathies. J Appl Physiol (1985). 2020 Oct 1;129(4):864-867. Epub 2020 Jul 16. PMID: 32673162; PMCID: PMC7832004. DOI: https://doi.org/10.1152/japplphysiol.00321.2020

Reggiani C, Schiaffino S. Muscle hypertrophy and muscle strength: dependent or independent variables? A provocative review. Eur J Transl Myol. 2020 Sep 9;30(3):9311. PMID: 33117512; PMCID: PMC7582410. DOI: https://doi.org/10.4081/ejtm.2020.9311

Ramírez-Vélez R, Legarra-Gorgoñon G, Oscoz-Ochandorena S, García-Alonso Y, García-Alonso N, Oteiza J, Ernaga Lorea A, Correa-Rodríguez M, Izquierdo M. Reduced muscle strength in patients with long-COVID-19 syndrome is mediated by limb muscle mass. J Appl Physiol (1985). 2023 Jan 1;134(1):50-58. Epub 2022 Nov 30. PMID: 36448687; PMCID: PMC9762963. DOI: https://doi.org/10.1152/japplphysiol.00599.2022

Cantu N, Vyavahare S, Kumar S, Chen J, Kolhe R, Isales CM, Hamrick M, Fulzele S. Synergistic Effects of Multiple Factors Involved in COVID-19-dependent Muscle Loss. Aging Dis. 2022 Apr 1;13(2):344-352. PMID: 35371610; PMCID: PMC8947833. DOI: https://doi.org/10.14336/AD.2021.0817

Swarnakar R, Jenifa S, Wadhwa S. Musculoskeletal complications in long COVID-19: A systematic review. World J Virol. 2022 Nov 25;11(6):485-495. PMID: 36483107; PMCID: PMC9724204. DOI: https://doi.org/10.5501/wjv.v11.i6.485

Cotler J, Holtzman C, Dudun C, Jason LA. A Brief Questionnaire to Assess Post-Exertional Malaise. Diagnostics (Basel). 2018 Sep 11;8(3):66. PMID: 30208578; PMCID: PMC6165517. DOI: https://doi.org/10.3390/diagnostics8030066

Décary S, Gaboury I, Poirier S, Garcia C, Simpson S, Bull M, Brown D, Daigle F. Humility and Acceptance: Working Within Our Limits With Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. J Orthop Sports Phys Ther. 2021 May;51(5):197-200. PMID: 33930983. DOI: https://doi.org/10.2519/jospt.2021.0106

Larun L, Brurberg KG, Odgaard-Jensen J, Price JR. Exercise therapy for chronic fatigue syndrome. Cochrane Database Syst Rev. 2017 Apr 25;4(4):CD003200. CD003200.pub7. Update in: Cochrane Database Syst Rev. 2019 Oct 02;10:CD003200. PMID: 28444695; PMCID: PMC6419524.

Dannaway J, New CC, New CH, Maher CG. Exercise therapy is a beneficial intervention for chronic fatigue syndrome (PEDro synthesis). Br J Sports Med. 2018 Apr;52(8):542-543. Epub 2017 Oct 5. PMID: 28982730. DOI: https://doi.org/10.1136/bjsports-2017-098407

Carraro U, Kern H, Gava P, Hofer C, Loefler S, Gargiulo P, Mosole S, Zampieri S, Gobbo V, Ravara B, Piccione F, Marcante A, Baba A, Schils S, Pond A, Gava F. Biology of Muscle Atrophy and of its Recovery by FES in Aging and Mobility Impairments: Roots and By-Products. Eur J Transl Myol. 2015 Aug 25;25(4):221-30. PMID: 26913160; PMCID: PMC4748978. DOI: https://doi.org/10.4081/ejtm.2015.5272

Mosole S, Rossini K, Kern H, Löfler S, Fruhmann H, Vogelauer M, Burggraf S, Grim-Stieger M, Cvečka J, Hamar D, Sedliak M, Šarabon N, Pond A, Biral D, Carraro U, Zampieri S. Reinnervation of Vastus lateralis is increased significantly in seniors (70-years old) with a lifelong history of high-level exercise (2013, revisited here in 2022). Eur J Transl Myol. 2022 Feb 28;32(1):10420. PMID: 35234026; PMCID: PMC8992670. DOI: https://doi.org/10.4081/ejtm.2022.10420

Sheehy LM. Considerations for Postacute Rehabilitation for Survivors of COVID-19. JMIR Public Health Surveill. 2020 May 8;6(2):e19462. PMID: 32369030; PMCID: PMC7212817. DOI: https://doi.org/10.2196/19462

Grishechkina IA, Lobanov AA, Andronov SV, Rachin AP, Fesyun AD, Ivanova EP, Masiero S, Maccarone MC. Long-term outcomes of different rehabilitation programs in patients with long COVID syndrome: a cohort prospective study. Eur J Transl Myol. 2023 Apr 13;33(2):11063. PMID: 37052043; PMCID: PMC10388602. DOI: https://doi.org/10.4081/ejtm.2023.11063

Ahmadi Hekmatikar AH, Ferreira Júnior JB, Shahrbanian S, Suzuki K. Functional and Psychological Changes after Exercise Training in Post-COVID-19 Patients Discharged from the Hospital: A PRISMA-Compliant Systematic Review. Int J Environ Res Public Health. 2022 Feb 17;19(4):2290. PMID: 35206483; PMCID: PMC8871540. DOI: https://doi.org/10.3390/ijerph19042290

Cattadori G, Di Marco S, Baravelli M, Picozzi A, Ambrosio G. Exercise Training in Post-COVID-19 Patients: The Need for a Multifactorial Protocol for a Multifactorial Pathophysiology. J Clin Med. 2022 Apr 15;11(8):2228. PMID: 35456321; PMCID: PMC9028177. DOI: https://doi.org/10.3390/jcm11082228

Scurati R, Papini N, Giussani P, Alberti G, Tringali C. The Challenge of Long COVID-19 Management: From Disease Molecular Hallmarks to the Proposal of Exercise as Therapy. Int J Mol Sci. 2022 Oct 14;23(20):12311. PMID: 36293160; PMCID: PMC9603679. DOI: https://doi.org/10.3390/ijms232012311

Qiu Y, Fernández-García B, Lehmann HI, Li G, Kroemer G, López-Otín C, Xiao J. Exercise sustains the hallmarks of health. J Sport Health Sci. 2023 Jan;12(1):8-35. Epub 2022 Oct 29. PMID: 36374766; PMCID: PMC9923435. DOI: https://doi.org/10.1016/j.jshs.2022.10.003

Cabello-Verrugio C, Morales MG, Rivera JC, Cabrera D, Simon F. Renin-angiotensin system: an old player with novel functions in skeletal muscle. Med Res Rev. 2015 May;35(3):437-63. Epub 2015 Mar 11. PMID: 25764065. DOI: https://doi.org/10.1002/med.21343

Morales MG, Abrigo J, Acuña MJ, Santos RA, Bader M, Brandan E, Simon F, Olguin H, Cabrera D, Cabello-Verrugio C. Angiotensin-(1-7) attenuates disuse skeletal muscle atrophy in mice via its receptor, Mas. Dis Model Mech. 2016 Apr;9(4):441-9. Epub 2016 Feb 5. PMID: 26851244; PMCID: PMC4852504. DOI: https://doi.org/10.1242/dmm.023390

Coscia, F., Di Filippo , E. S., Gigliotti, P. V., & Fano Illic, G. (2023). Effect of physical activity on long COVID fatigue: an unsolved enigma. European Journal of Translational Myology, 33(3). https://doi.org/10.4081/ejtm.2023.11639

Downloads

Download data is not yet available.

Citations