Unleashing the potential of millets: a comprehensive review of its nutritional, therapeutic, and genomic attributes

Submitted: November 25, 2023
Accepted: April 7, 2024
Published: May 7, 2024
Abstract Views: 979
PDF: 198
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Millets are cereal grains whose farming dates back thousands of years and have been farmed and consumed by a wide variety of cultures around the world. In recent times, there has been a growing interest in millets due to their medicinal characteristics and nutritional advantages. Millets have a substantial nutritional content and can provide a wide range of beneficial health effects. These foods have a relatively low glycemic index in addition to their high levels of dietary fiber, proteins, vitamins, and minerals. In this review, the most recent information regarding the potential effects of millets on the management of diabetes, the health of the heart, antioxidant activity, anti-cancer capacities, and other therapeutic benefits is investigated. In addition, the report provides an in-depth analysis of the current genome resources that are associated with millets, as well as a summary of the key genetic discoveries that have been made. The report also emphasizes the need for further research to maximize the potential of millets through the utilization of genetic resources and breeding techniques to develop high-nutrient-rich and climate-resilient varieties.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Tripathi T, Vyas S. From ancient grains to modern solutions: A history of millets and their significance in agriculture and food security. Int J Home Sc. 2023;9:72–8.
Wimalasiri EM, Ashfold MJ, Jahanshiri E, et al. Agro-climatic sensitivity analysis for sustainable crop diversification; the case of Proso millet (Panicum miliaceum L.). PLoS One 2023;18. DOI: https://doi.org/10.1371/journal.pone.0283298
Bandyopadhyay T, Muthamilarasan M, Prasad M. Millets for next generation climate-smart agriculture. Front Plant Sci 2017;8. DOI: https://doi.org/10.3389/fpls.2017.01266
González-Rabanal B, Marín-Arroyo AB, Cristiani E, et al. The arrival of millets to the Atlantic coast of northern Iberia. Sci Rep 2022;12:18589. DOI: https://doi.org/10.1038/s41598-022-23227-4
Jain N, Arora P, Tomer R, et al. Greenhouse gases emission from soils under major crops in Northwest India. Sci Total Environ 2016;542:551–61. DOI: https://doi.org/10.1016/j.scitotenv.2015.10.073
Thilagavathi T, Kanchana S, Banumathi P, et al. Physico-chemical and functional characteristics of selected millets and pulses. Indian J Sci Technol 2015;8:147. DOI: https://doi.org/10.17485/ijst/2015/v8iS7/70075
Kalsi R, Bhasin J, Goksen G, Kashyap P. Exploration of nutritional, pharmacological, and the processing trends for valorization of finger millet ( Eleusine coracana ): A review. Food Sci Nutr 2023;11:6802–19. DOI: https://doi.org/10.1002/fsn3.3659
Ramashia SE, Anyasi TA, Gwata ET, et al. Processing, nutritional composition and health benefits of finger millet in sub-saharan Africa. Food Sci Technol 2019;39:253–66. DOI: https://doi.org/10.1590/fst.25017
Anitha S, Rajendran A, Botha R, et al. Variation in the nutrient content of different genotypes and varieties of millets, studied globally: a systematic review. Front Sustain Food Syst 2024;8. DOI: https://doi.org/10.3389/fsufs.2024.1324046
Anberbir SM, Satheesh N, Abera AA, et al. Evaluation of nutritional composition, functional and pasting properties of pearl millet, teff, and buckwheat grain composite flour. Appl Food Res 2024;4:100390. DOI: https://doi.org/10.1016/j.afres.2024.100390
Dasa F, Nguyen Binh L. Relation among proximate compositions, rheological properties and injera making quality of millet varieties. Adv Crop Sci Technol 2020.
Kim SK, Sohn EY, Lee IJ. Starch properties of native foxtail millet, Setaria italica Beauv. J Crop Sci Biotechnol 2009;12:59–62. DOI: https://doi.org/10.1007/s12892-009-0073-0
Kalsi R, Bhasin JK. Nutritional exploration of foxtail millet ( Setaria italica ) in addressing food security and its utilization trends in food system. eFood 2023;4. DOI: https://doi.org/10.1002/efd2.111
Niharika V, Rao BG, Tushara M, Rao VS. Studies on performance of browntop millet indigenous collections for grain yield and nutritional traits. J Pharmacogn Phytochem 2020;9:2636–8.
Singh A, Bharath M, Kotiyal A, et al. Barnyard millet: The underutilized nutraceutical minor millet crop. Pharm Innov 2022;11:115–28.
Sao A, Pali V, Patil HE. Genetic improvement for yield, quality, biotic, and abiotic stresses in little millet (Panicum sumatrense Roth. ex Roem. and Schult.). Springer Nature; 2024:571–99. DOI: https://doi.org/10.1007/978-981-99-7232-6_28
Vetriventhan M, Upadhyaya HD. Variability for productivity and nutritional traits in germplasm of kodo millet, an underutilized nutrient‐rich climate smart crop. Crop Sci 2019;59:1095–106. DOI: https://doi.org/10.2135/cropsci2018.07.0450
Balli D, Bellumori M, Masoni A, et al. Proso millet (Panicum miliaceum L.) as alternative source of starch and phenolic compounds: a study on twenty-five worldwide accessions. Molecules 2023;28:6339. DOI: https://doi.org/10.3390/molecules28176339
Verma S, Srivastava S, Tiwari N. Comparative study on nutritional and sensory quality of barnyard and foxtail millet food products with traditional rice products. J Food Sci Technol 2015;52:5147–55. DOI: https://doi.org/10.1007/s13197-014-1617-y
Jenfa MD, Adelusi OA, Aderinoye A, et al. Physicochemical compositions, nutritional and functional properties, and color qualities of sorghum–orange‐fleshed sweet potato composite flour. Food Sci Nutr 2024:1–15 DOI: https://doi.org/10.1002/fsn3.3922
Vetriventhan M, Upadhyaya HD, Azevedo VC, et al. Variability and trait‐specific accessions for grain yield and nutritional traits in germplasm of little millet ( Panicum sumatrense Roth. Ex. Roem. & Schult.). Crop Sci 2021;6:2658–79. DOI: https://doi.org/10.1002/csc2.20527
Kumar SR, Tangsrianugul N, Suphantharika M. A review on isolation, characterization, modification, and applications of proso millet starch. Foods. 2023;1:2413. DOI: https://doi.org/10.20944/preprints202305.1796.v1
Deswal P, Rana A, Samtiya M, et al. Amino acids profiling and functional properties of non-biofortified hybrid and biofortified pearl millet varieties. Act Sci Nutr Health 2024;02–8. DOI: https://doi.org/10.31080/ASNH.2024.08.1341
Kumari P, Pareek V, Kajla P, Khurana S. Composition, structure and functionality of starch isolated from kodo millet. In: Non-Conventional Starch Sources; 2024:253–78. DOI: https://doi.org/10.1016/B978-0-443-18981-4.00009-4
Mahajan P, Bera MB, Panesar PS, Chauhan A. Millet starch: a review. Int J Biol Macromol 2021;180:61–79. DOI: https://doi.org/10.1016/j.ijbiomac.2021.03.063
Santhi Sirisha K, Hymavathi T, Suchiritha Devi S, Neela Rani R. Nutritional properties of browntop millet (Brachiaria ramosa). Pharm Innov 2022;11:729–33.
Motlhaodi T, Bryngelsson T, Chite S, et al. Nutritional variation in sorghum [Sorghum bicolor (L.) Moench] accessions from southern Africa revealed by protein and mineral composition. J Cereal Sci 2018;83:123–9. DOI: https://doi.org/10.1016/j.jcs.2018.08.010
Bunkar DS. Nutritional, functional role of kodo millet and its processing: a review. Int J Curr Microbiol Appl Sci 2021;10:1972–85. DOI: https://doi.org/10.20546/ijcmas.2021.1001.229
Navami MM, Abraham B, Archana H, Nisha P. Nutritional profiling and quantitative analysis of amino acids and vitamins using LC–MS/MS in selected raw and germinated ancient grains. JSFA Reports 2023;377–86. DOI: https://doi.org/10.1002/jsf2.141
Sheethal H V, Baruah C, Subhash K, et al. Insights of nutritional and anti-nutritional retention in traditionally processed millets. Front Sustain Food Syst 2022;5. DOI: https://doi.org/10.3389/fsufs.2021.735356
Hassan ZM, Sebola NA, Mabelebele M. The nutritional use of millet grain for food and feed: a review. Agric Food Secur 2021;10:16. DOI: https://doi.org/10.1186/s40066-020-00282-6
Popova A, Mihaylova D. Antinutrients in plant-based foods: a review. Open Biotechnol J 2019;13:68–76.
Ram S, Narwal S, Gupta OP, et al. Anti-nutritional factors and bioavailability: approaches, challenges, and opportunities. Wheat and Barley Grain Biofortification 2020;101–28. DOI: https://doi.org/10.1016/B978-0-12-818444-8.00004-3
Popova A, Mihaylova D. Antinutrients in plant-based foods: a review. Open Biotechnol J 2019;13:68–76. DOI: https://doi.org/10.2174/1874070701913010068
Garcı́a-Estepa RM, Guerra-Hernández E, Garcı́a-Villanova B. Phytic acid content in milled cereal products and breads. Int Food Res J 1999;32:217–21. DOI: https://doi.org/10.1016/S0963-9969(99)00092-7
Goudar G, Manne M, Sathisha GJ, et al. Phenolic, nutritional and molecular interaction study among different millet varieties. Food Chemistry Advances 2023;2:100150. DOI: https://doi.org/10.1016/j.focha.2022.100150
Sunagar RR, Sreerama YN. Impact of milling on the nutrients and anti‐nutrients in browntop millet ( Urochloa ramosa ) and its milled fractions: evaluation of their flour functionality. J Sci Food Agric 2024; Epub ahead of print. DOI: https://doi.org/10.1002/jsfa.13382
Ponnapalli H, Karakannavar SJ. Effect of processing on antinutritional and carbohydrate fractions of browntop millet. Agri Assoc Textil Chem Criti Rev 2023;11:258–66. DOI: https://doi.org/10.58321/AATCCReview.2023.11.04.258
Wang H, Fu Y, Zhao Q, et al. Effect of different processing methods on the millet polyphenols and their anti-diabetic potential. Front Nutr 2022;9. DOI: https://doi.org/10.3389/fnut.2022.780499
Shukla V, Srivastava S, Singh S, et al. Unveiling the intricacies of phytate antinutrients in millets and their therapeutic implications in breast cancer. Int Pharm 2023; In Press, Corrected Proof. DOI: https://doi.org/10.1016/j.ipha.2023.12.005
Gunathunga C, Senanayake S, Jayasinghe MA, et al. Germination effects on nutritional quality: A comprehensive review of selected cereals and pulses changes. J Food Compos Anal 2024;128:106024. DOI: https://doi.org/10.1016/j.jfca.2024.106024
Osman MA. Effect of traditional fermentation process on the nutrient and antinutrient contents of pearl millet during preparation of Lohoh. J Saudi Soc Agric Sci 2011;10:1–6. DOI: https://doi.org/10.1016/j.jssas.2010.06.001
Alwohaibi A, Ali A, Sakr Sally. Germination and fermentation are effective to reduce the antinutritive factors of millet: a-review. J Food Dairy Sci 2022;13:77–81. DOI: https://doi.org/10.21608/jfds.2022.134899.1053
Onyango CA, Ochanda SO, Mwasaru MA, et al. Effects of malting and fermentation on anti-nutrient reduction and protein digestibility of red sorghum, white sorghum and pearl millet. J Food Res 2013;2:41. DOI: https://doi.org/10.5539/jfr.v2n1p41
Davana TV, Revanna ML, Begum SS. Effect of malting on the nutritional composition, anti-nutrition factors and mineral composition on sorghum (Sorghum bicolor). Asian J Dairy Food Res 2021;40. DOI: https://doi.org/10.18805/ajdfr.DR-1624
Samtiya M, Aluko RE, Dhewa T. Plant food anti-nutritional factors and their reduction strategies: an overview. Food Prod Process Nutr 2020;2:6. DOI: https://doi.org/10.1186/s43014-020-0020-5
Joudaki H, Aria N, Moravej R, et al. Microbial phytases: properties and applications in the food industry. Curr Microbiol 2023;80:374. DOI: https://doi.org/10.1007/s00284-023-03471-1
Ogurtsova K, da Rocha Fernandes JD, Huang Y, et al. IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract 2017;128:40–50. DOI: https://doi.org/10.1016/j.diabres.2017.03.024
Galicia-Garcia U, Benito-Vicente A, Jebari S, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci 2020;21:6275. DOI: https://doi.org/10.3390/ijms21176275
Fu Y, Yin R, Liu Z, et al. Hypoglycemic effect of prolamin from cooked foxtail millet (Setaria italic) on streptozotocin-induced diabetic mice. Nutrients 2020;12:3452. DOI: https://doi.org/10.3390/nu12113452
Ren X, Wang L, Chen Z, et al. Foxtail millet improves blood glucose metabolism in diabetic rats through pi3k/akt and nf-κb signaling pathways mediated by gut microbiota. Nutrients 2021;13:1837. DOI: https://doi.org/10.3390/nu13061837
Wang H, Shen Q, Fu Y, et al. Effects on diabetic mice of consuming lipid extracted from foxtail millet (Setaria italica): gut microbiota analysis and serum metabolomics. J Agric Food Chem 2023;71:10075–86. DOI: https://doi.org/10.1021/acs.jafc.3c02179
Wang H, Fu Y, Zhao Q, et al. Effects of heat-treated starch and protein from foxtail millet (Setaria italica) on type 2 diabetic mice. Food Chem 2023;404:134735. DOI: https://doi.org/10.1016/j.foodchem.2022.134735
Almaski A, Coe S, Lightowler H, et al. Finger millet-based muffin decreases insulin response in individuals with prediabetes in a randomised controlled trial. Br J Nutr 2023;129:650–9. DOI: https://doi.org/10.1017/S0007114522001623
Thakkar R, Kapoor R. Enrichment of rice and finger millet based preparations with gum acacia and their effects on glycemic response in non-insulin dependent diabetic subjects. J Food Sci Technol 2007;183–5.
Mudgil P, Alblooshi M, Singh BP, et al. Pearl millet protein hydrolysates exhibiting effective in‐vitro antioxidant, antidiabetic and anti‐lipidemic properties as potential functional food ingredient. Int J Food Sci Technol 2023;58:3264–72. DOI: https://doi.org/10.1111/ijfs.16151
Deng X, Liang J, Wang L, et al. Whole Grain Proso Millet ( Panicum miliaceum L. ) Attenuates hyperglycemia in type 2 diabetic mice: involvement of mirna profile. J Agric Food Chem 2023;71:9324–36. DOI: https://doi.org/10.1021/acs.jafc.2c08184
Anis MA, Sreerama YN. Inhibition of protein glycoxidation and advanced glycation end-product formation by barnyard millet (Echinochloa frumentacea) phenolics. Food Chem 2020;315:126265. DOI: https://doi.org/10.1016/j.foodchem.2020.126265
Cabral CE, Klein MRST. Phytosterols in the treatment of hypercholesterolemia and prevention of cardiovascular diseases. Arq Bras Cardiol 2017;109:475–82. DOI: https://doi.org/10.5935/abc.20170158
Pexová Kalinová J, Tříska J, Hořejší K. Comparison of the main constituents in two varieties of proso millet using GC_MS. Foods 2023;12:2294. DOI: https://doi.org/10.3390/foods12122294
Bhandari SR, Lee YS. The contents of phytosterols, squalene, and vitamin e and the composition of fatty acids of korean landrace setaria italica and sorghum bicolar seeds. Korean J. Plant Res 2013;26:663–72. DOI: https://doi.org/10.7732/kjpr.2013.26.6.663
Magalhães TLS, da Silva BP, Grancieri M, et al. Germinated and non-germinated cooked whole millet ( Pennisetum glaucum (L.) R. Br.) flours show a promising effect on protein quality, biochemical profile and intestinal health in vivo. Food Funct 2023;14:5678–89. DOI: https://doi.org/10.1039/D2FO02915D
Liu F, Shan S, Li H, et al. Millet shell polyphenols ameliorate atherosclerosis development by suppressing foam cell formation. J Nutr Biochem 2023;115:109271. DOI: https://doi.org/10.1016/j.jnutbio.2023.109271
Alzahrani NS, Alshammari GM, El-Ansary A, et al. Anti-hyperlipidemia, hypoglycemic, and hepatoprotective impacts of pearl millet (Pennisetum glaucum L.) grains and their ethanol extract on rats fed a high-fat diet. Nutrients 2022;14:1791. DOI: https://doi.org/10.3390/nu14091791
Chandrasekara A, Shahidi F. Content of insoluble bound phenolics in millets and their contribution to antioxidant capacity. J Agric Food Chem 2010;58:6706–14. DOI: https://doi.org/10.1021/jf100868b
Asharani VT, Jayadeep A, Malleshi NG. Natural antioxidants in edible flours of selected small millets. Int J Food Prop 2010;13:41–50. DOI: https://doi.org/10.1080/10942910802163105
Zabolotneva AA, Shatova OP, Sadova AA, et al. An overview of alkylresorcinols biological properties and effects. J Nutr Metab 2022;2022:1–12. DOI: https://doi.org/10.1155/2022/4667607
Ross AB, Shepherd MJ, Schüpphaus M, et al. Alkylresorcinols in cereals and cereal products. J Agric Food Chem 2003;51:4111–8. DOI: https://doi.org/10.1021/jf0340456
Zhang L C, Liu Y N, La X Q, et al. The bound polyphenols of foxtail millet (Setaria italica) inner shell inhibit breast cancer by promoting lipid accumulation-induced autophagic death. Food Chem Toxicol 2023;177:113855. DOI: https://doi.org/10.1016/j.fct.2023.113855
Kuruburu MG, Bovilla VR, Leihang Z, Madhunapantula S V. Phytochemical-rich fractions from foxtail millet (Setaria italica (l.) p. beauv) seeds exhibited antioxidant activity and reduced the viability of breast cancer cells in vitro by inducing dna fragmentation and promoting cell cycle arrest. Anticancer Agents Med Chem 2022;22:2477–93. DOI: https://doi.org/10.2174/1871520622666220215122141
Ren A, Chen L, Zhao W, et al. Extraction optimization and structural characterization of soluble dietary fiber in foxtail millet and its inhibitory activities on colon cancer. J Funct Foods 2023;107:105659. DOI: https://doi.org/10.1016/j.jff.2023.105659
Abioye VF, Babarinde GO, Ogunlakin GO, et al. Varietal and processing influence on nutritional and phytochemical properties of finger millet: A review. Heliyon 2022;8. DOI: https://doi.org/10.1016/j.heliyon.2022.e12310
Ramadoss DP, Sivalingam N. Vanillin extracted from proso and barnyard millets induce apoptotic cell death in HT-29 human colon cancer cell line. Nutr Cancer 2020;72:1422–37. DOI: https://doi.org/10.1080/01635581.2019.1672763
Wang H, Zhao Q, Fu Y, et al. Foxtail millet (Setaria italica) alleviates non-alcoholic fatty liver disease in high-fat diet/streptozotocin-induced diabetic mice through gut microbiota modulation. Food Biosci 2023;53:102797. DOI: https://doi.org/10.1016/j.fbio.2023.102797
Shan S, Zhou J, Yin R, et al. Millet bran protein hydrolysate displays the anti-non-alcoholic fatty liver disease effect via activating peroxisome proliferator-activated receptor γ to restrain fatty acid uptake. J Agric Food Chem 2023;71:1628–42. DOI: https://doi.org/10.1021/acs.jafc.2c08169
Lee E, Seo HD, Kim D, et al. Millet seed oil activates β–catenin signaling and promotes hair growth. Front Pharmacol 2023;14. DOI: https://doi.org/10.3389/fphar.2023.1172084
Rai S, Kaur A, Chopra CS. Gluten-free products for celiac susceptible people. Front Nutr 2018;5. DOI: https://doi.org/10.3389/fnut.2018.00116
Varshney RK, Shi C, Thudi M, et al. Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat Biotechnol 2017;35:969–76. DOI: https://doi.org/10.1038/nbt.3943
Quevillon E, Silventoinen V, Pillai S, et al. InterProScan: protein domains identifier. Nucleic Acids Res 2005;33:116-20. DOI: https://doi.org/10.1093/nar/gki442
Bairoch A. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res 2000;28:45–8. DOI: https://doi.org/10.1093/nar/28.1.45
Semalaiyappan J, Selvanayagam S, Rathore A, et al. Development of a new AgriSeq 4K mid-density SNP genotyping panel and its utility in pearl millet breeding. Front Plant Sci 2023;13. DOI: https://doi.org/10.3389/fpls.2022.1068883
Salson M, Orjuela J, Mariac C, et al. An improved assembly of the pearl millet reference genome using oxford nanopore long reads and optical mapping. G3 Genes Genome Genet 2023;13 DOI: https://doi.org/10.1093/g3journal/jkad051
Yan H, Sun M, Zhang Z, et al. Pangenomic analysis identifies structural variation associated with heat tolerance in pearl millet. Nat Genet 2023;55:507–18. DOI: https://doi.org/10.1038/s41588-023-01302-4
Goron TL, Raizada MN. Genetic diversity and genomic resources available for the small millet crops to accelerate a new green revolution. Front Plant Sci 2015;6. DOI: https://doi.org/10.3389/fpls.2015.00157
Hittalmani S, Mahesh HB, Shirke MD, et al. Genome and transcriptome sequence of finger millet (Eleusine coracana (L.) Gaertn.) provides insights into drought tolerance and nutraceutical properties. BMC Genom 2017;18:465. DOI: https://doi.org/10.1186/s12864-017-3850-z
Hatakeyama M, Aluri S, Balachadran MT, et al. Multiple hybrid de novo genome assembly of finger millet, an orphan allotetraploid crop. DNA Res 2018;25:39–47. DOI: https://doi.org/10.1093/dnares/dsx036
Zhang G, Liu X, Quan Z, et al. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol 2012;30:549–54. DOI: https://doi.org/10.1038/nbt.2195
Tsai KJ, Lu MYJ, Yang KJ, et al. Assembling the Setaria italica L. Beauv. genome into nine chromosomes and insights into regions affecting growth and drought tolerance. Sci Rep 2016;6:35076. DOI: https://doi.org/10.1038/srep35076
Wang J, Li S, Lan L, et al. De novo genome assembly of a foxtail millet cultivar Huagu11 uncovered the genetic difference to the cultivar Yugu1, and the genetic mechanism of imazethapyr tolerance. BMC Plant Biol 2021;21:271. DOI: https://doi.org/10.1186/s12870-021-03003-8
Li X, Hou S, Feng M, et al. MDSi: multi-omics database for Setaria italica. BMC Plant Biol 2023;23:223. DOI: https://doi.org/10.1186/s12870-023-04238-3
Zou C, Li L, Miki D, et al. The genome of broomcorn millet. Nat Commun 2019;10:436. DOI: https://doi.org/10.1038/s41467-019-08409-5
Khound R, Sun G, Mural R V, et al. SNP discovery in proso millet (Panicum miliaceum L.) using low‐pass genome sequencing. Plant Direct 2022;6. DOI: https://doi.org/10.1002/pld3.447
Francis N, Rajasekaran R, Rajagopalan VR, et al. Molecular characterization and SNP identification using genotyping-by-sequencing in high-yielding mutants of proso millet. Front Plant Sci 2023;14. DOI: https://doi.org/10.3389/fpls.2023.1108203
Barrett SH. Crop mimicry in weeds. Econ Bot 1983;37:255–82. DOI: https://doi.org/10.1007/BF02858881
Guo L, Qiu J, Ye C, et al. Echinochloa crus-galli genome analysis provides insight into its adaptation and invasiveness as a weed. Nat Commun 2017;8:1031. DOI: https://doi.org/10.1038/s41467-017-01067-5
Paterson AH, Bowers JE, Bruggmann R, et al. The Sorghum bicolor genome and the diversification of grasses. Nature 2009;457:551–6. DOI: https://doi.org/10.1038/nature07723
McCormick RF, Truong SK, Sreedasyam A, et al. The Sorghum bicolor reference genome: improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization. Plant J 2018;93:338–54. DOI: https://doi.org/10.1111/tpj.13781
Deschamps S, Zhang Y, Llaca V, Ye L, et al. A chromosome-scale assembly of the sorghum genome using nanopore sequencing and optical mapping. Nat Commun 2018;9:4844. DOI: https://doi.org/10.1038/s41467-018-07271-1
Cooper EA, Brenton ZW, Flinn BS, et al. A new reference genome for Sorghum bicolor reveals high levels of sequence similarity between sweet and grain genotypes: implications for the genetics of sugar metabolism. BMC Genom 2019;20:420. DOI: https://doi.org/10.1186/s12864-019-5734-x
Gong Y, Li Y, Liu X, et al. A review of the pangenome: how it affects our understanding of genomic variation, selection and breeding in domestic animals? J Anim Sci Biotechnol 2023;14:73. DOI: https://doi.org/10.1186/s40104-023-00860-1
Ruperao P, Thirunavukkarasu N, Gandham P, et al. Sorghum pan-genome explores the functional utility for genomic-assisted breeding to accelerate the genetic gain. Front Plant Sci 2021;12:666342. DOI: https://doi.org/10.3389/fpls.2021.666342
Tao Y, Luo H, Xu J, et al. Extensive variation within the pan-genome of cultivated and wild sorghum. Nat Plants 2021;7:766–73. DOI: https://doi.org/10.1038/s41477-021-00925-x
Kulthe AA, Thorat SS, Land SB. Characterization of Pearl Millet Cultivars for Proximate Composition, Minerals and Anti-Nutritional Contents. 2016; https://www.semanticscholar.org/paper/Characterization-of-Pearl-Millet-Cultivars-for-and-Kulthe-Thorat/54eedd0a14918fd16f226eb47b76cfbdb94a1e48
Dias‐Martins AM, Trombete FM, Cappato LP, et al. Processing, composition, and technological properties of decorticated, sprouted, and extruded pearl millet (Pennisetum glaucum (L.) R. Br.) flours. J Food Process Eng 2024;47. DOI: https://doi.org/10.1111/jfpe.14561
Sibanda F, Jideani VA, Obilana AO. Nutritional, biochemical, and functional properties of pearl millet and moringa oleifera leaf powder composite meal powders. Foods 2024;13:743. DOI: https://doi.org/10.3390/foods13050743
Panwar P, Dubey A, Verma AK. Evaluation of nutraceutical and antinutritional properties in barnyard and finger millet varieties grown in Himalayan region. J Food Sci Technol 2016;53:2779–87.
Sharma N, Niranjan K. Foxtail millet: Properties, processing, health benefits, and uses. Food Reviews International 2018;34:329–63. DOI: https://doi.org/10.1080/87559129.2017.1290103
Ofosu FK, Elahi F, Daliri EBM, et al. Phenolic profile, antioxidant, and antidiabetic potential exerted by millet grain varieties. Antioxidants 2020;9:254.
Yang Q, Zhang W, Li J, et al. Physicochemical properties of starches in proso (non-waxy and waxy) and foxtail millets (non-waxy and waxy). Molecules 2019;24:1743. DOI: https://doi.org/10.3390/molecules24091743
Panwar P, Dubey A, Verma AK. Evaluation of nutraceutical and antinutritional properties in barnyard and finger millet varieties grown in Himalayan region. J Food Sci Technol 2016;53:2779–87. DOI: https://doi.org/10.1007/s13197-016-2250-8
Sudharshana L, Monteiro PV, Ramachandra G. Studies on the proteins of kodo millet ( Paspalum scrobiculatum ). J Sci Food Agric 1988;42:315–23. DOI: https://doi.org/10.1002/jsfa.2740420405
Manimozhi SV, Nirmalakumari A, Senthil N. Genetic diversity for zinc, calcium and iron content of selected little millet genotypes. J Nutr Food Sci 2015;05. DOI: https://doi.org/10.4172/2155-9600.1000417
Kayodé APP, Linnemann AR, Hounhouigan JD, et al. Genetic and environmental impact on iron, zinc, and phytate in food sorghum grown in benin. J Agric Food Chem 2006;54:256–62. DOI: https://doi.org/10.1021/jf0521404
Abdelhalim TS, Kamal NM, Hassan AB. Nutritional potential of wild sorghum: Grain quality of Sudanese wild sorghum genotypes ( Sorghum bicolor L. Moench). Food Sci Nutr 2019;7:1529–39. DOI: https://doi.org/10.1002/fsn3.1002
Ofosu FK, Elahi F, Daliri EBM, et al. Phenolic profile, antioxidant, and antidiabetic potential exerted by millet grain varieties. Antioxidants 2020;9:254. DOI: https://doi.org/10.3390/antiox9030254
Shyam R, Singh RP. Evaluation of nutritional value and anti nutritional factors of kodo millet (Paspalum scrobiculatum l.). gerplasm grown in eastern (UP). Plant Arch 2018;18:247–50.
Jan S, Kumar K, Ahmed DN, et al. Beneficial effect of diverse fermentation treatments on nutritional composition, bioactive components, and anti-nutritional factors of foxtail millet (Setaria italica L.). J Postharvest Technol 2022;10:46-52 DOI: https://doi.org/10.7324/JABB.2022.10s107
Devisetti R, Yadahally SN, Bhattacharya S. Nutrients and antinutrients in foxtail and proso millet milled fractions: Evaluation of their flour functionality. Food Sci Technol 2014;59:889–95. DOI: https://doi.org/10.1016/j.lwt.2014.07.003

How to Cite

Vadakkemukadiyil Chellappan, B., & Peramaiyan, R. (2024). Unleashing the potential of millets: a comprehensive review of its nutritional, therapeutic, and genomic attributes. Journal of Biological Research - Bollettino Della Società Italiana Di Biologia Sperimentale, 97(1). https://doi.org/10.4081/jbr.2024.12131