Time performance of scoop stretcher versus vacuum mattress for prehospital spinal stabilization: open-label simulation-based randomized controlled trial

Submitted: 24 December 2023
Accepted: 9 February 2024
Published: 4 March 2024
Abstract Views: 1934
PDF: 580
Supplementary Materials: 245
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Recent research has yielded conflicting results on the use of spinal stabilization in prehospital care, with some guidelines expressing concerns about its potential lack of benefit or harm. Transportation on a backboard can cause pain, discomfort, and pressure ulcers, whereas the log-roll technique can cause unnecessary movement and aggravate existing injuries. The scoop stretcher and vacuum mattress provide comparable or better immobilization and comfort than the backboard. Prehospital time is critical, and patients with life-threatening conditions should undergo rapid stabilization procedures. Despite this, some studies have overlooked the scoop stretcher as a spinal stabilization device. The primary goal was to compare the time required to achieve spinal stabilization using a scoop stretcher versus a vacuum mattress. This was a monocentric, parallel, randomized (sealed envelope), superiority, open-label, controlled simulation experiment. All student paramedics, registered paramedics, and EMTs who work in the participating EMS were eligible to participate in the study apart of the study team. The experimental group had to use a scoop stretcher, whereas the control group used a vacuum mattress. Fifteen participants were included. The scoop stretcher group required less time to complete the stabilization procedure (median [Q1; Q3]: 127 seconds [111;145] versus 212 [156;237], p=0.005). Using a scoop stretcher for spinal stabilization is more time-efficient than a vacuum mattress, making it a viable option for unstable trauma patients in the prehospital setting. More research is needed to determine its efficacy in actual clinical practice.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Ten Brinke JG, Groen SR, Dehnad M, et al. Prehospital care of spinal injuries: a historical quest for reasoning and evidence. Eur Spine J 2018;27:2999–3006. DOI: https://doi.org/10.1007/s00586-018-5762-2
Feld FX. Removal of the Long Spine Board From Clinical Practice: A Historical Perspective. J Athl Train 2018;53:752–755. DOI: https://doi.org/10.4085/1062-6050-462-17
Hauswald M, Ong G, Tandberg D, Omar Z. Out-of-hospital Spinal Immobilization: Its Effect on Neurologic Injury. Acad Emerg Med 1998;5:214–219. DOI: https://doi.org/10.1111/j.1553-2712.1998.tb02615.x
Kornhall DK, Jørgensen JJ, Brommeland T, et al. The Norwegian guidelines for the prehospital management of adult trauma patients with potential spinal injury. Scand J Trauma Resusc Emerg Med 2017;25. DOI: https://doi.org/10.1186/s13049-016-0345-x
Maschmann C, Jeppesen E, Rubin MA, Barfod C. New clinical guidelines on the spinal stabilisation of adult trauma patients – consensus and evidence based. Scand J Traum Resusc Emerg Med 2019;27:77. DOI: https://doi.org/10.1186/s13049-019-0655-x
Mawson AR, Biundo JJ, Neville P, et al. Risk factors for early occurring pressure ulcers following spinal cord injury. Am J Phys Med Rehabil 1988;67:123–7. DOI: https://doi.org/10.1097/00002060-198806000-00007
Cordell WH, Hollingsworth JC, Olinger ML, et al. Pain and tissue-interface pressures during spine-board immobilization. Ann Emerg Med 1995;26:31–36. DOI: https://doi.org/10.1016/S0196-0644(95)70234-2
Walton R, DeSalvo JF, Ernst AA, Shahane A. Padded vs unpadded spine board for cervical spine immobilization. Acad Emerg Med 1995;2:725–8. DOI: https://doi.org/10.1111/j.1553-2712.1995.tb03625.x
Chan D, Goldberg R, Tascone A, et al. The effect of spinal immobilization on healthy volunteers. Ann Emerg Med 1994;23:48–51. DOI: https://doi.org/10.1016/S0196-0644(94)70007-9
Ham W, Schoonhoven L, Schuurmans MJ, Leenen LPH. Pressure ulcers from spinal immobilization in trauma patients: a systematic review. J Trauma Acute Care Surg 2014;76:1131–41. DOI: https://doi.org/10.1097/TA.0000000000000153
Ottosen CI, Steinmetz J, Larsen MH, et al. Patient experience of spinal immobilisation after trauma. Scand J Trauma Resusc Emerg Med 2019;27:70. DOI: https://doi.org/10.1186/s13049-019-0647-x
McGuire RA, Neville S, Green BA, Watts C. Spinal instability and the log-rolling maneuver. J Trauma 1987;27:525–31. DOI: https://doi.org/10.1097/00005373-198705000-00012
Suter RE. Thoraco-Lumbar Spinal Instability During Variations of the Log-Roll Maneuver. Prehospital Disaster Med World Assoc Disaster Emerg Med 1992;7:133–8. DOI: https://doi.org/10.1017/S1049023X00039364
Conrad BP, Horodyski M, Wright J, et al. Log-rolling technique producing unacceptable motion during body position changes in patients with traumatic spinal cord injury. J Neurosurg Spine 2007;6:540–3. DOI: https://doi.org/10.3171/spi.2007.6.6.4
Del Rossi G, Horodyski MH, Conrad BP, et al. The 6-plus-person lift transfer technique compared with other methods of spine boarding. J Athl Train 2008;43:6–13. DOI: https://doi.org/10.4085/1062-6050-43.1.6
Del Rossi G, Horodyski M, Conrad BP, et al. Transferring patients with thoracolumbar spinal instability: are there alternatives to the log roll maneuver? Spine (Phila Pa 1976) 2008;33:1611–5. DOI: https://doi.org/10.1097/BRS.0b013e3181788683
Del Rossi G, Rechtine GR, Conrad BP, Horodyski M. Are scoop stretchers suitable for use on spine-injured patients? Am J Emerg Med 2010;28:751–6. DOI: https://doi.org/10.1016/j.ajem.2009.03.014
Horodyski M, Conrad BP, Del Rossi G, et al. Removing a patient from the spine board: is the lift and slide safer than the log roll? J Trauma 2011;70:1282–5; discussion 1285. DOI: https://doi.org/10.1097/TA.0b013e31820ff2bc
Conrad BP, Rossi GD, Horodyski MB, et al. Eliminating log rolling as a spine trauma order. Surg Neurol Int 2012;3:S188–97. DOI: https://doi.org/10.4103/2152-7806.98584
Lee C, Porter K. The prehospital management of pelvic fractures. Emerg Med J 2007;24:130–3. DOI: https://doi.org/10.1136/emj.2006.041384
Leech C, Porter K, Bosanko C. Log-rolling a blunt major trauma patient is inappropriate in the primary survey. Emerg Med J 2014;31:86. DOI: https://doi.org/10.1136/emermed-2013-203283
Hawkridge K, Ahmed I, Ahmed Z. Evidence for the use of spinal collars in stabilising spinal injuries in the pre-hospital setting in trauma patients: a systematic review. Eur J Trauma Emerg Surg 2020;48:647-57. DOI: https://doi.org/10.1007/s00068-020-01576-x
Lin H-L, Lee W-C, Chen C-W, et al. Neck collar used in treatment of victims of urban motorcycle accidents: over- or underprotection? Am J Emerg Med 2011;29:1028–33. DOI: https://doi.org/10.1016/j.ajem.2010.06.003
Raphael JH, Chotai R. Effects of the cervical collar on cerebrospinal fluid pressure. Anaesthesia 1994;49:437–9. DOI: https://doi.org/10.1111/j.1365-2044.1994.tb03482.x
Davies G, Deakin C, Wilson A. The effect of a rigid collar on intracranial pressure. Injury 1996;27:647–9. DOI: https://doi.org/10.1016/S0020-1383(96)00115-5
Kolb JC, Summers RL, Galli RL. Cervical collar-induced changes in intracranial pressure. Am J Emerg Med 1999;17:135–7. DOI: https://doi.org/10.1016/S0735-6757(99)90044-X
Plaisier B, Gabram SG, Schwartz RJ, Jacobs LM. Prospective evaluation of craniofacial pressure in four different cervical orthoses. J Trauma 1994;37:714–20. DOI: https://doi.org/10.1097/00005373-199411000-00004
Lerner EB, Billittier AJ, Moscati RM. The effects of neutral positioning with and without padding on spinal immobilization of healthy subjects. Prehosp Emerg Care 1998;2:112–6. DOI: https://doi.org/10.1080/10903129808958853
Abram S, Bulstrode C. Routine spinal immobilization in trauma patients: what are the advantages and disadvantages? Surgeon 2010;8:218–22. DOI: https://doi.org/10.1016/j.surge.2010.01.002
Ben-Galim P, Dreiangel N, Mattox KL, et al. Extrication collars can result in abnormal separation between vertebrae in the presence of a dissociative injury. J Trauma 2010;69:447–50. DOI: https://doi.org/10.1097/TA.0b013e3181be785a
Holla M. Value of a rigid collar in addition to head blocks: a proof of principle study. Emerg Med J 2012;29:104–7. DOI: https://doi.org/10.1136/emj.2010.092973
Bruijns SR, Guly HR, Wallis LA. Effect of spinal immobilization on heart rate, blood pressure and respiratory rate. Prehosp Disaster Med 2013;28:210–4. DOI: https://doi.org/10.1017/S1049023X13000034
Rao PJ, Phan K, Mobbs RJ, et al. Cervical spine immobilization in the elderly population. J Spine Surg 2016;2:41–6. DOI: https://doi.org/10.21037/jss.2016.02.02
Swartz EE, Tucker WS, Nowak M, et al. Prehospital Cervical Spine Motion: Immobilization Versus Spine Motion Restriction. Prehosp Emerg Care 2018;22:630–6. DOI: https://doi.org/10.1080/10903127.2018.1431341
Kwan I, Bunn F. Effects of prehospital spinal immobilization: a systematic review of randomized trials on healthy subjects. Prehosp Disaster Med 2005;20:47–53. DOI: https://doi.org/10.1017/S1049023X00002144
Horodyski M, DiPaola CP, Conrad BP, Rechtine GR. Cervical collars are insufficient for immobilizing an unstable cervical spine injury. J Emerg Med 2011;41:513–9. DOI: https://doi.org/10.1016/j.jemermed.2011.02.001
Kreinest M, Goller S, Rauch G, et al. Application of Cervical Collars – An Analysis of Practical Skills of Professional Emergency Medical Care Providers. PLoS One 2015;10:e0143409. DOI: https://doi.org/10.1371/journal.pone.0143409
Krell JM, McCoy MS, Sparto PJ, et al. Comparison of the Ferno Scoop Stretcher with the long backboard for spinal immobilization. Prehosp Emerg Care 2006;10:46–51. DOI: https://doi.org/10.1080/10903120500366375
Hamilton RS, Pons PT. The efficacy and comfort of full-body vacuum splints for cervical-spine immobilization. J Emerg Med 1996;14:553–9. DOI: https://doi.org/10.1016/S0736-4679(96)00170-9
Johnson DR, Hauswald M, Stockhoff C. Comparison of a vacuum splint device to a rigid backboard for spinal immobilization. Am J Emerg Med 1996;14:369–72. DOI: https://doi.org/10.1016/S0735-6757(96)90051-0
Totten VY, Sugarman DB. Respiratory effects of spinal immobilization. Prehosp Emerg Care 1999;3:347–52. DOI: https://doi.org/10.1080/10903129908958967
Cross DA, Baskerville J. Comparison of perceived pain with different immobilization techniques. Prehosp Emerg Care 2001;5:270–4. DOI: https://doi.org/10.1080/10903120190939779
Luscombe MD, Williams JL. Comparison of a long spinal board and vacuum mattress for spinal immobilisation. Emerg Med J 2003;20:476–8. DOI: https://doi.org/10.1136/emj.20.5.476
Chan D, Goldberg RM, Mason J, Chan L. Backboard versus mattress splint immobilization: a comparison of symptoms generated. J Emerg Med 1996;14:293–8. DOI: https://doi.org/10.1016/0736-4679(96)00034-0
Roessler M, Riffelmann M, Kunze-Szikszay N, et al. Vacuum mattress or long spine board: which method of spinal stabilisation in trauma patients is more time consuming? A simulation study. Scand J Trauma Resusc Emerg Med 2021;29:46. DOI: https://doi.org/10.1186/s13049-021-00854-w
Regel G, Stalp M, Lehmann U, Seekamp A. Prehospital care, importance of early intervention on outcome. Acta Anaesthesiol Scand Suppl 1997;110:71–6. DOI: https://doi.org/10.1111/j.1399-6576.1997.tb05508.x
Liberman M, Mulder D, Sampalis J. Advanced or basic life support for trauma: meta-analysis and critical review of the literature. J Trauma 2000;49:584–99. DOI: https://doi.org/10.1097/00005373-200010000-00003
Haut ER, Kalish BT, Efron DT, et al. Spine immobilization in penetrating trauma: more harm than good? J Trauma 2010;68:115–20; discussion 120-121. DOI: https://doi.org/10.1097/TA.0b013e3181c9ee58
Gauss T, Ageron F-X, Devaud M-L, et al. Association of Prehospital Time to In-Hospital Trauma Mortality in a Physician-Staffed Emergency Medicine System. JAMA Surg 2019;154:1117–24. DOI: https://doi.org/10.1001/jamasurg.2019.3475
Pham H, Puckett Y, Dissanaike S. Faster on-scene times associated with decreased mortality in Helicopter Emergency Medical Services (HEMS) transported trauma patients. Trauma Surg Acute Care Open 2017;2:e000122. DOI: https://doi.org/10.1136/tsaco-2017-000122
Harmsen AMK, Giannakopoulos GF, Moerbeek PR, et al. The influence of prehospital time on trauma patients outcome: a systematic review. Injury 2015;46:602–9. DOI: https://doi.org/10.1016/j.injury.2015.01.008
Vanderlan WB, Tew BE, McSwain NE. Increased risk of death with cervical spine immobilisation in penetrating cervical trauma. Injury 2009;40:880–3. DOI: https://doi.org/10.1016/j.injury.2009.01.011
Chan A-W, Tetzlaff JM, Altman DG, et al. SPIRIT 2013 Statement: Defining Standard Protocol Items for Clinical Trials. Ann Intern Med 2013;158:200–7. DOI: https://doi.org/10.7326/0003-4819-158-3-201302050-00583
International Conference on Harmonisation. Good Clinical Practice. Accessed Nov 24, 2020. Available from: https://www.ich.org/page/efficacy-guidelines
Schulz KF, Altman DG, Moher D. CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trials. BMJ 2010;340:c332. DOI: https://doi.org/10.1136/bmj.c332
CONSORT for reporting randomised trials in journal and conference abstracts | EQUATOR Network. Accessed May 19, 2023. Available from: https://www.equator-network.org/reporting-guidelines/consort-abstracts/
Stuby L, Jampen L, Sierro J, et al. Effect on Chest Compression Fraction of Continuous Manual Compressions with Asynchronous Ventilations Using an i-gel® versus 30:2 Approach during Simulated Out-of-Hospital Cardiac Arrest: Protocol for a Manikin Multicenter Randomized Controlled Trial. Healthcare Multidisciplinary Digital Publishing Institute 2021;9:354. DOI: https://doi.org/10.3390/healthcare9030354
Suppan L, Abbas M, Stuby L, et al. Effect of an E-Learning Module on Personal Protective Equipment Proficiency Among Prehospital Personnel: Web-Based Randomized Controlled Trial. J Med Internet Res 2020;22:e21265. DOI: https://doi.org/10.2196/21265
Keamk - Create random and balanced teams. Accessed Jan 5, 2021. Available from: https://www.keamk.com/
Create a blocked randomisation list | Sealed Envelope. Accessed Dec 6, 2020. Available from: https://www.sealedenvelope.com/simple-randomiser/v1/lists
Christiansen T, Lauritsen J. EpiData Software - http://www.epidata.dk. Accessed Dec 18, 2020. Available from: https://www.epidata.dk/ Accessed Dec 18, 2020.
Gordillo Martín R, Alcaraz Ramón PE, Manzano Capel F, et al. Análisis cinemático de la columna vertebral durante la colocación de dos dispositivos de transferencia: tablero espinal frente a camilla de cuchara [Kinematic analysis of the spine during placement on 2 transfer devices: a spinal backboard and a scoop stretcher]. Emergencias 2017;29:43–45.
Greenwood N. Understanding the Hawthorne effect. Accessed Nov 28, 2021. Available from: https://core.ac.uk/reader/74393583?utm_source=linkout
Campbell JP, Maxey VA, Watson WA. Hawthorne effect: implications for prehospital research. Ann Emerg Med 1995;26:590–4. DOI: https://doi.org/10.1016/S0196-0644(95)70009-9
Swiss CPR Studies Group. Time performance of Scoop Stretcher versus Vacuum Mattress for Prehospital Spinal Stabilization: Open-Label Simulation-based Randomized Controlled Trial - Datasets 2021. Accessed May 19, 2023. Available from: https://doi.org/10.26037/yareta:zhoycayfyfgxbgqss6sivv5h3a

How to Cite

Stuby, L., & Thurre, D. (2024). Time performance of scoop stretcher versus vacuum mattress for prehospital spinal stabilization: open-label simulation-based randomized controlled trial. Emergency Care Journal, 20(1). https://doi.org/10.4081/ecj.2024.12226