Oxy-inflammation in hyperbaric oxygen therapy applications

Submitted: 4 July 2024
Accepted: 27 July 2024
Published: 20 January 2025
Abstract Views: 252
PDF: 136
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Hyperbaric oxygen therapy (HBOT) is a non-invasive method of O2 delivery that induces systemic hyperoxia. Hyperbaric chamber consists of a pressure vessel and a compressed breathing gas supply, which can regulate internal pressure. The chamber delivers 100% O2 to patients according to predetermined protocols and is monitored by trained personnel. HBOT relies on increasing the inspired O2 fraction (fiO2) and elevating the partial pressure of O2 (pO2). O2 is typically administered at pressures between 1.5 and 3.0 ATA for 60 to 120 minutes, depending on the clinical presentation. Currently, there are 15 indications for HBOT approved by the Undersea and Hyperbaric Medicine Society, categorized into three groups: emergency medicine, wound healing acceleration, and antimicrobial effects. The present narrative review aims to elucidate the mechanisms action underlying HBOT, particularly oxy-inflammation, in various pathologies within these categories.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Martin DS, Grocott III MP. Oxygen therapy in anaesthesia: the yin and yang of O2. Br J Anaesth 2013:111:867-71. DOI: https://doi.org/10.1093/bja/aet291
Camporesi EM, Bosco G. Mechanisms of action of hyperbaric oxygen therapy. Undersea Hyperb Med 2014:41:247-52.
Bennett M, Best TM, Babul S, et al. Hyperbaric oxygen therapy for delayed onset muscle soreness and closed soft tissue injury. Cochrane Database Syst Rev 2005:2005:CD004713. DOI: https://doi.org/10.1002/14651858.CD004713
Ortega MA, Fraile-Martinez O, Garcia-Montero C, et al. A general overview on the hyperbaric oxygen therapy: applications, mechanisms and translational opportunities. Medicina (Kaunas) 2021:57(9). DOI: https://doi.org/10.3390/medicina57090864
Bergendi L, Benes L, Durackova Z, Ferencik M. Chemistry, physiology and pathology of free radicals. Life Sci 1999:65:1865-74. DOI: https://doi.org/10.1016/S0024-3205(99)00439-7
Rubini A, Porzionato A, Sarasin G, et al. Hyperbaric air exposure at 2.5 ATA does not affect respiratory mechanics and lung histology in the rat. Lung 2014:192:609-14. DOI: https://doi.org/10.1007/s00408-014-9576-7
Bosco G, Paganini M, Giacon TA, et al. Oxidative stress and inflammation, microRNA, and hemoglobin variations after administration of oxygen at different pressures and concentrations: a randomized trial. Int J Environ Res Public Health 2021;18(18). DOI: https://doi.org/10.3390/ijerph18189755
Leite RF, Annes K, Ispada J, et al. Oxidative stress alters the profile of transcription factors related to early development on in vitro produced embryos. Oxid Med Cell Longev 2017:2017:1502489. DOI: https://doi.org/10.1155/2017/1502489
Mrakic-Sposta S, Vezzoli A, Garetto G, et al. Hyperbaric oxygen therapy counters oxidative stress/inflammation-driven symptoms in long COVID-19 patients: preliminary outcomes. Metabolites 2023:13(10). DOI: https://doi.org/10.3390/metabo13101032
Dhamodharan U, Karan A, Sireesh D, et al. Tissue-specific role of Nrf2 in the treatment of diabetic foot ulcers during hyperbaric oxygen therapy. Free Radic Biol Med 2019:138:53-62. DOI: https://doi.org/10.1016/j.freeradbiomed.2019.04.031
Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 1999:340:448-54. DOI: https://doi.org/10.1056/NEJM199902113400607
Chen X, Duan XS, Xu L J, et al. Interleukin-10 mediates the neuroprotection of hyperbaric oxygen therapy against traumatic brain injury in mice. Neuroscience 2014:266:235-43. DOI: https://doi.org/10.1016/j.neuroscience.2013.11.036
Yang Y, Zhang YG, Lin GA, et al. The effects of different hyperbaric oxygen manipulations in rats after traumatic brain injury. Neurosci Lett 2014:563:38-43. DOI: https://doi.org/10.1016/j.neulet.2014.01.002
Almzaiel AJ, Billington R, Smerdon G, Moody AJ. Effects of hyperbaric oxygen treatment on antimicrobial function and apoptosis of differentiated HL-60 (neutrophil-like) cells. Life Sci 2013:93:125-31. DOI: https://doi.org/10.1016/j.lfs.2013.06.003
Thom SR, Hyperbaric oxygen: its mechanisms and efficacy. Plast Reconstr Surg 2011:127:131S-141S. DOI: https://doi.org/10.1097/PRS.0b013e3181fbe2bf
Lin SS, Ueng SW, Niu CC, et al. Hyperbaric oxygen promotes osteogenic differentiation of bone marrow stromal cells by regulating Wnt3a/beta-catenin signaling--an in vitro and in vivo study. Stem Cell Res 2014:12:260-74. DOI: https://doi.org/10.1016/j.scr.2013.10.007
Wu D, Malda J, Crawford R, Xiao Y, Effects of hyperbaric oxygen on proliferation and differentiation of osteoblasts from human alveolar bone. Connect Tissue Res 2007:48:206-13. DOI: https://doi.org/10.1080/03008200701458749
Thom SR, Bhopale VM, Velazquez OC, et al. Stem cell mobilization by hyperbaric oxygen. Am J Physiol Heart Circ Physiol 2006:290:H1378-86. DOI: https://doi.org/10.1152/ajpheart.00888.2005
Mellem H, Emhjellen S, Horgen O. Pulmonary barotrauma and arterial gas embolism caused by an emphysematous bulla in a SCUBA diver. Aviat Space Environ Med 1990;61:559-62.
Ozyigit T, Egi SM, Denoble P, et al. Decompression illness medically reported by hyperbaric treatment facilities: cluster analysis of 1929 cases. Aviat Space Environ Med 2010:81:3-7. DOI: https://doi.org/10.3357/ASEM.2495.2010
Longphre JM, Denoble PJ, Moon RE, et al. First aid normobaric oxygen for the treatment of recreational diving injuries. Undersea Hyperb Med 2007:34:43-9.
Moon RE, Sheffield PJ. Guidelines for treatment of decompression illness. Aviat Space Environ Med 1997:68:234-43.
Vann RD, Butler FK, Mitchell SJ, Moon RE. Decompression illness. Lancet 2011:377:153-64. DOI: https://doi.org/10.1016/S0140-6736(10)61085-9
Moon RE, Mitchell S. Hyperbaric treatment for decompression sickness: current recommendations. Undersea Hyperb Med 2019:46:685-93. DOI: https://doi.org/10.22462/10.12.2019.14
Hampson NB, Dunn SL. Symptoms of carbon monoxide poisoning do not correlate with the initial carboxyhemoglobin level. Undersea Hyperb Med 2012:39:657-65.
Thom SR, Bhopale VM, Fisher D, et al. Delayed neuropathology after carbon monoxide poisoning is immune-mediated. Proc Natl Acad Sci U S A 2004:101:13660-5. DOI: https://doi.org/10.1073/pnas.0405642101
Angelova PR, Myers I, Abramov AY, Carbon monoxide neurotoxicity is triggered by oxidative stress induced by ROS production from three distinct cellular sources. Redox Biol 2023:60:102598. DOI: https://doi.org/10.1016/j.redox.2022.102598
Thom SR, Bhopale VM, Fisher D. Hyperbaric oxygen reduces delayed immune-mediated neuropathology in experimental carbon monoxide toxicity. Toxicol Appl Pharmacol 2006:213:152-9. DOI: https://doi.org/10.1016/j.taap.2005.10.006
Robins M, Falkson SR, Goldfarb J, Wyatt HA. Hyperbaric Treatment of Ischemia Reperfusion Injury. In StatPearls. Treasure Island (FL): StatPearls Publishing 2024.
Yang ZJ, Bosco G, Montante A, Ou XI, Camporesi EM. Hyperbaric O2 reduces intestinal ischemia-reperfusion-induced TNF-alpha production and lung neutrophil sequestration. Eur J Appl Physiol 2001;85:96-103. DOI: https://doi.org/10.1007/s004210100391
Cuzzocrea S, Imperatore F, Costantino G, et al. Role of hyperbaric oxygen exposure in reduction of lipid peroxidation and in multiple organ failure induced by zymosan administration in the rat. Shock 2000;13:197-203. DOI: https://doi.org/10.1097/00024382-200003000-00005
Yang Z, Nandi J, Wang J, et al. Hyperbaric oxygenation ameliorates indomethacin-induced enteropathy in rats by modulating TNF-alpha and IL-1beta production. Dig Dis Sci 2006;51:1426-33 DOI: https://doi.org/10.1007/s10620-006-9088-2
Bosco G, Yang Z J, Nandi J, et al. Effects of hyperbaric oxygen on glucose, lactate, glycerol and anti-oxidant enzymes in the skeletal muscle of rats during ischaemia and reperfusion. Clin Exp Pharmacol Physiol 2007:34:70-6. DOI: https://doi.org/10.1111/j.1440-1681.2007.04548.x
Kontos HA, Oxygen radicals in cerebral ischemia: the 2001 Willis lecture. Stroke 2001:32:2712-6. DOI: https://doi.org/10.1161/hs1101.098653
Yang ZJ, Xie Y, Bosco G, et al. Hyperbaric oxygenation alleviates MCAO-induced brain injury and reduces hydroxyl radical formation and glutamate release. Eur J Appl Physiol 2010:108:513-22. DOI: https://doi.org/10.1007/s00421-009-1229-9
Gregorevic P, Lynch GS, Williams DA. Hyperbaric oxygen modulates antioxidant enzyme activity in rat skeletal muscles. Eur J Appl Physiol 2001;86:24-7. DOI: https://doi.org/10.1007/s004210100503
May AK, Skin and Soft Tissue Infections. Surgical Clinics of North America 2009:89:403. DOI: https://doi.org/10.1016/j.suc.2008.09.006
Moet GJ, Jones RN, Biedenbach DJ, et al. Contemporary causes of skin and soft tissue infections in North America, Latin America, and Europe: Report from the SENTRY Antimicrobial Surveillance Program (1998-2004). Diagn Microbiol Infect Dis 2007:57:7-13. DOI: https://doi.org/10.1016/j.diagmicrobio.2006.05.009
Brouwer MC, Tunkel AR, McKhann GM, van de Beek D, Brain Abscess. New Engl J Med 2014:371:447-56. DOI: https://doi.org/10.1056/NEJMra1301635
Rollins MD, Gibson JJ, Hunt TK, Hopf HW. Wound oxygen levels during hyperbaric oxygen treatment in healing wounds. Undersea Hyperb Med 2006:33:17-25.
Boykin Jr JV, Baylis C. Hyperbaric oxygen therapy mediates increased nitric oxide production associated with wound healing: a preliminary study. Adv Skin Wound Care 2007:20:382-8. DOI: https://doi.org/10.1097/01.ASW.0000280198.81130.d5
Thom SR, Oxidative stress is fundamental to hyperbaric oxygen therapy. J Appl Physiol (1985) 2009:106:988-95. DOI: https://doi.org/10.1152/japplphysiol.91004.2008
Hedetoft M, Jensen PO, Moser C, et al. Hyperbaric oxygen treatment impacts oxidative stress markers in patients with necrotizing soft-tissue infection. J Investig Med 2021:69:1330-8. DOI: https://doi.org/10.1136/jim-2021-001837
Takaki S, Takeyama N, Kajita Y, et al. Beneficial effects of the heme oxygenase-1/carbon monoxide system in patients with severe sepsis/septic shock. Intensive Care Med 2010:36:42-8. DOI: https://doi.org/10.1007/s00134-009-1575-4
Hansen MB, Rasmussen LS, Svensson M, et al. Association between cytokine response, the LRINEC score and outcome in patients with necrotising soft tissue infection: a multicentre, prospective study. Sci Rep 2017:7:42179. DOI: https://doi.org/10.1038/srep42179
Levi M, van der Poll T. Endothelial injury in sepsis. Intensive Care Med 2013:39:1839-42. DOI: https://doi.org/10.1007/s00134-013-3054-1
Lerche CJ, Christophersen, LJ, Kolpen M, et al. Hyperbaric oxygen therapy augments tobramycin efficacy in experimental Staphylococcus aureus endocarditis. Int J Antimicrob Agents 2017:50:406-412. DOI: https://doi.org/10.1016/j.ijantimicag.2017.04.025
Kayal S, Jais JP, Aguini N, Chaudiere J, Labrousse J, Elevated circulating E-selectin, intercellular adhesion molecule 1, and von Willebrand factor in patients with severe infection. Am J Respir Crit Care Med 1998:157:776-84. DOI: https://doi.org/10.1164/ajrccm.157.3.9705034
Hedetoft M, Moser C, Jensen PO, Vinkel J, Hyldegaard O, Soluble ICAM-1 is modulated by hyperbaric oxygen treatment and correlates with disease severity and mortality in patients with necrotizing soft-tissue infection. J Appl Physiol (1985) 2021:130:729-36. DOI: https://doi.org/10.1152/japplphysiol.00844.2020
Schneidewind L, Anheuser P, Schonburg S, et al. Hyperbaric Oxygenation in the Treatment of Fournier's Gangrene: A Systematic Review. Urol Int 2021;105:247-56. DOI: https://doi.org/10.1159/000511615
Aaron R, Gray R. Osteonecrosis: etiology, natural history, pathophysiology, and diagnosis. In Allaghan JJ, Rosenberg AG, Rubash H eds. The adult hip. Philadelphia: Lippincott Williams & Wilkins 2007. pp 465–476.
Camporesi EM, Vezzani G, Bosco G, et al. Hyperbaric oxygen therapy in femoral head necrosis. J Arthroplasty 2010:25:118-23. DOI: https://doi.org/10.1016/j.arth.2010.05.005
Theoleyre S, Wittrant Y, Tat SK, et al. The molecular triad OPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodeling. Cytokine Growth Factor Rev 2004:15:457-75. DOI: https://doi.org/10.1016/j.cytogfr.2004.06.004
Vezzani G, Quartesan S, Cancellara P, et al. Hyperbaric oxygen therapy modulates serum OPG/RANKL in femoral head necrosis patients. J Enzyme Inhib Med Chem 2017:32:707-11. DOI: https://doi.org/10.1080/14756366.2017.1302440
Bosco G, Vezzani G, Mrakic Sposta S, et al. Hyperbaric oxygen therapy ameliorates osteonecrosis in patients by modulating inflammation and oxidative stress. J Enzyme Inhib Med Chem 2018:33:1501-5. DOI: https://doi.org/10.1080/14756366.2018.1485149
Elliott EL, Fritzsch B, Yamoah EN, Zine A. Age-Related Hearing Loss: Sensory and Neural Etiology and Their Interdependence. Front Aging Neurosci 2022:14:814528. DOI: https://doi.org/10.3389/fnagi.2022.814528
Kamogashira T, Fujimoto C, Yamasoba T. Reactive oxygen species, apoptosis, and mitochondrial dysfunction in hearing loss. Biomed Res Int 2015:2015:617207. DOI: https://doi.org/10.1155/2015/617207
Galaris D, Barbouti A, Pantopoulos K. Iron homeostasis and oxidative stress: An intimate relationship. Biochim Biophys Acta Mol Cell Res 2019:1866:118535. DOI: https://doi.org/10.1016/j.bbamcr.2019.118535
Huo Z, Cheng X, Gu J, Hong Y, et al. Prognostic factors for hearing outcomes in patients that undergo adjuvant hyperbaric oxygen therapy for sudden sensorineural hearing loss. Laryngoscope Investig Otolaryngol 2022:7:592-8. DOI: https://doi.org/10.1002/lio2.768

How to Cite

Bosco, G., Brizzolari, A., Paganini, M., Camporesi, E., Vezzoli, A., & Mrakic-Sposta, S. (2025). Oxy-inflammation in hyperbaric oxygen therapy applications. European Journal of Translational Myology. https://doi.org/10.4081/ejtm.2025.12783