Immodulin peptides influence musculoskeletal homeostasis by linking extracellular cues to macrophage and myoblast nuclear receptors


Submitted: 22 June 2022
Accepted: 8 September 2022
Published: 19 September 2022
Abstract Views: 1051
PDF: 382
HTML: 7
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Immodulins are synthetic peptides derived from the C-terminal domains of insulin-like growth factor binding proteins (IGFBPs). Immodulins from the 3/5/6 (but not 1/2/4) IGFBP evolutionary clade transduce extracellular matrix (ECM) signals to RXR, NR4A1 and PPAR-alpha nuclear receptors (NRs) to stimulate novel macrophage lineages. The rationale of this study was to reconcile physical associations of immodulins with ECM and NRs, effects of siRNAs and chemical inhibitors in vivo, and immodulin-driven pro-differentiation effects in cell culture. When added to THP1D cells, immodulins stimulate CD169+ Clec9a+ and Clec12a+ macrophage lineages via a EP300/RXRγ/Nur77 transcriptional mechanism. This phenomenon is accompanied by the secretion of CCL22, IL-10 and TGFbeta and the ability to stimulate FoxP3+ T-cells in co-culture. ECM ligands of 3/5/6 immodulins include iron, zinc, glycosaminoglycans, transferrin and phosphatidylinositol-4,5,-biphosphate (PIP2), which can influence their pro-differentiation effects. Remarkably, immodulins also stimulate myogenesis in C2C12 myoblasts, thereby revealing a novel link between immune and musculoskeletal homeostasis. Distinct NR agonists stimulate these companion differentiation processes. Using solution NMR to guide design, immodulins with a tripeptide extension near the iron-binding pocket demonstrated higher iron-binding and improved pro-differentiation activities. Transferrin-bound immodulin shows binding preference for both high-molecular-weight hyaluronan (HMWHA) and HMWHA:CD44 complexes at endosomal pH, and interacts with PIP2 at normal physiological pH, offering intriguing mechanistic insights.


Daza DO, Sundström G, Bergqvist CA, Duan C, Larhammar D. Evolution of the insulin-like growth factor binding protein (IGFBP) family. Endocrinology. 2011; 152(6):2278-89. DOI: https://doi.org/10.1210/en.2011-0047

Baxter RC. Nuclear actions of insulin-like growth factor binding protein-3. Gene. 2015; 569(1):7-13. DOI: https://doi.org/10.1016/j.gene.2015.06.028

Singh, B., D. Charkowicz, and D. Mascarenhas. Insulin-like growth factor-independent effects mediated by a C-terminal metal-binding domain of insulin-like growth factor binding protein-3. J Biol Chem. 2004; 279:477-487. DOI: https://doi.org/10.1074/jbc.M307322200

Fowlkes JL, Thrailkill KM, George-Nascimento C, Rosenberg CK, Serra DM. Heparin-binding, highly basic regions within the thyroglobulin type-1 repeat of insulin-like growth factor (IGF)-binding proteins (IGFBPs) -3, -5, and -6 inhibit IGFBP-4 degradation. Endocrinology. 1997; 138(6):2280-5. DOI: https://doi.org/10.1210/endo.138.6.5182

Weinzimer SA, Gibson TB, Collett-Solberg PF, Khare A, Liu B, Cohen P. Transferrin is an insulin-like growth factor-binding protein-3 binding protein. J Clin Endocrinol Metab. 2001; 86(4):1806-13. DOI: https://doi.org/10.1210/jc.86.4.1806

Liu B, Weinzimer SA, Gibson TB, Mascarenhas D, Cohen P. Type I alpha collagen is an IGFBP-3 binding protein. Growth Horm IGF Res. 2003; 13(2-3):89-97. DOI: https://doi.org/10.1016/S1096-6374(03)00007-8

Müller S, Sindikubwabo F, Cañeque T, Lafon A, Versini A, Lombard B, et al. CD44 regulates epigenetic plasticity by mediating iron endocytosis. Nat Chem. 2020; 12(10):929-938. DOI: https://doi.org/10.1038/s41557-020-0513-5

Mascarenhas DD, El Ayadi A, Ravikumar P, Kang GJ, Langer T, Moreno C, Amento EP. Positive effects of ferric iron on the systemic efficacy of nephrilin peptide in burn trauma. Scars, Burns & Healing 2020; 6:1-8. DOI: https://doi.org/10.1177/2059513120928494

Dawson MI, Xia Z. The retinoid X receptors and their ligands. Biochim Biophys Acta. 2012; 1821(1):21-56. DOI: https://doi.org/10.1016/j.bbalip.2011.09.014

Bookout AL, Jeong Y, Downes M, Yu RT, Evans RM, Mangelsdorf DJ. Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell. 2006; 126(4):789-99. DOI: https://doi.org/10.1016/j.cell.2006.06.049

Hanna RN, Carlin LM, Hubbeling HG, Nackiewicz D, Green AM, Punt JA, et al (2011). The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C- monocytes. Nat Immunol. 12(8):778-85. DOI: https://doi.org/10.1038/ni.2063

Manickam R, Duszka K, Wahli W. PPARs and Microbiota in Skeletal Muscle Health and Wasting. Int J Mol Sci. 2020; 21(21):8056. DOI: https://doi.org/10.3390/ijms21218056

Lu D, Xu Y, Liu Q, Zhang Q. Mesenchymal Stem Cell-Macrophage Crosstalk and Maintenance of Inflammatory Microenvironment Homeostasis. Front Cell Dev Biol. 2021; 9:681171. DOI: https://doi.org/10.3389/fcell.2021.681171

Grabowska J, Lopez-Venegas MA, Affandi AJ, den Haan JMM. CD169 + Macrophages Capture and Dendritic Cells Instruct: The Interplay of the Gatekeeper and the General of the Immune System. Front Immunol. 2018; 9:2472. DOI: https://doi.org/10.3389/fimmu.2018.02472

Ravishankar B, Shinde R, Liu H, Chaudhary K, Bradley J, Lemos HP, et al. Marginal zone CD169+ macrophages coordinate apoptotic cell-driven cellular recruitment and tolerance. Proc Natl Acad Sci U S A. 2014; 111:4215-20. DOI: https://doi.org/10.1073/pnas.1320924111

Neumann K, Castiñeiras-Vilariño M, Höckendorf U, Hannesschläger N, Lemeer S, Kupka D, et al. Clec12a is an inhibitory receptor for uric acid crystals that regulates inflammation in response to cell death. Immunity. 2014; 40(3):389-99. DOI: https://doi.org/10.1016/j.immuni.2013.12.015

Zhang JG, Czabotar PE, Policheni AN, Caminschi I, Wan SS, Kitsoulis S, et al. The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments. Immunity. 2012; 36(4):646-57. DOI: https://doi.org/10.1016/j.immuni.2012.03.009

Jutras I, Desjardins M. Phagocytosis at the crossroads of innate and adaptive immunity. Annu Rev Cell Dev Biol. 2005; 21:511-27. DOI: https://doi.org/10.1146/annurev.cellbio.20.010403.102755

Freeman SA, Vega A, Riedl M, Collins RF, Ostrowski PP, Woods EC, et al. Transmembrane Pickets Connect Cyto- and Pericellular Skeletons Forming Barriers to Receptor Engagement. Cell. 2018; 172(1-2):305-317.e10. DOI: https://doi.org/10.1016/j.cell.2017.12.023

Miletti-González KE, Murphy K, Kumaran MN, Ravindranath AK, Wernyj RP, Kaur S, et al. Identification of function for CD44 intracytoplasmic domain (CD44-ICD): modulation of matrix metalloproteinase 9 (MMP-9) transcription via novel promoter response element. J Biol Chem. 2012; 287(23):18995-9007. DOI: https://doi.org/10.1074/jbc.M111.318774

Vistejnova L, Safrankova B, Nesporova K, Slavkovsky R, Hermannova M, Hosek P, et al. Low molecular weight hyaluronan mediated CD44 dependent induction of IL-6 and chemokines in human dermal fibroblasts potentiates innate immune response. Cytokine. 2014; 70(2):97-103. DOI: https://doi.org/10.1016/j.cyto.2014.07.006

Bollyky PL, Lord JD, Masewicz SA, Evanko SP, Buckner JH, Wight TN, Nepom GT. Cutting edge: high molecular weight hyaluronan promotes the suppressive effects of CD4+CD25+ regulatory T cells. J Immunol. 2007; 179(2):744-7. DOI: https://doi.org/10.4049/jimmunol.179.2.744

Lith SC, van Os BW, Seijkens TTP, de Vries CJM. 'Nur'turing tumor T cell tolerance and exhaustion: novel function for Nuclear Receptor Nur77 in immunity. Eur J Immunol. 2020; 50(11):1643-1652. DOI: https://doi.org/10.1002/eji.202048869

Mascarenhas DD, Ravikumar P, Amento EP. N-modulin peptides attenuate respiratory distress in a scald-endotoxemia model. Burns Open. 2022; 6:1-6. DOI: https://doi.org/10.1016/j.burnso.2021.09.001

Huq, A., B. Singh, T. Meeker, and D. Mascarenhas. The metal-binding domain of IGFBP-3 selectively delivers therapeutic molecules into cancer cells. Anticancer Drug. 2009; 20:21-31. DOI: https://doi.org/10.1097/CAD.0b013e3283144610

Oufattole M, Lin SW, Liu B, Mascarenhas D, Cohen P, Rodgers BD. Ribonucleic acid polymerase II binding subunit 3 (Rpb3), a potential nuclear target of insulin-like growth factor binding protein-3. Endocrinology. 2006; 147(5):2138-46. DOI: https://doi.org/10.1210/en.2005-1269

Vogt AS, Arsiwala T, Mohsen M, Vogel M, Manolova V, Bachmann MF. On Iron Metabolism and Its Regulation. Int J Mol Sci. 2021; 22(9):4591. DOI: https://doi.org/10.3390/ijms22094591

Mascarenhas, D. D. (2022). Immodulin peptides influence musculoskeletal homeostasis by linking extracellular cues to macrophage and myoblast nuclear receptors. European Journal of Translational Myology, 32(4). https://doi.org/10.4081/ejtm.2022.10695

Downloads

Download data is not yet available.

Citations