Intensive care unit-acquired weakness: A review from molecular mechanisms to its impact in COVID-2019

Submitted: 12 April 2022
Accepted: 8 August 2022
Published: 26 August 2022
Abstract Views: 1351
PDF: 751
HTML: 460
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Intensive Care Unit-Acquired Weakness (ICU-AW) is a generalized and symmetric neuromuscular dysfunction associated with critical illness and its treatments. Its incidence is approximately 80% in intensive care unit patients, and it manifests as critical illness polyneuropathy, critical illness myopathy, and muscle atrophy. Intensive care unit patients can lose an elevated percentage of their muscle mass in the first days after admission, producing short- and long-term sequelae that affect patients’ quality of life, physical health, and mental health. In 2019, the world was faced with coronavirus disease 2019 (COVID-19), caused by the acute respiratory syndrome coronavirus 2. COVID-19 produces severe respiratory disorders, such as acute respiratory distress syndrome, which increases the risk of developing ICU-AW. COVID-19 patients treated in intensive care units have shown early diffuse and symmetrical muscle weakness, polyneuropathy, and myalgia, coinciding with the clinical presentation of ICU-AW. Besides, these patients require prolonged intensive care unit stays, invasive mechanical ventilation, and intensive care unit pharmacological therapy, which are risk factors for ICU-AW. Thus, the purposes of this review are to discuss the features of ICU-AW and its effects on skeletal muscle. Further, we will describe the mechanisms involved in the probable development of ICU-AW in severe COVID-19 patients.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Plaudit

Stevens RD, Marshall SA, Cornblath DR, Hoke A, Needham DM, de Jonghe B, Ali NA, Sharshar T. A framework for diagnosing and classifying intensive care unit-acquired weakness. Crit Care Med. 2009 Oct;37(10 Suppl):S299-308. DOI: https://doi.org/10.1097/CCM.0b013e3181b6ef67
Jolley SE, Bunnell AE, Hough CL. ICU-Acquired Weakness. Chest. 2016 Nov;150(5):1129-1140. DOI: https://doi.org/10.1016/j.chest.2016.03.045
Griffiths RD, Hall JB. Intensive care unit-acquired weakness. Crit Care Med. 2010 Mar;38(3):779-87. DOI: https://doi.org/10.1097/CCM.0b013e3181cc4b53
Vanhorebeek I, Latronico N, Van den Berghe G. ICU-acquired weakness. Intensive Care Med. 2020 Apr;46(4):637-653. DOI: https://doi.org/10.1007/s00134-020-05944-4
Puthucheary ZA, Rawal J, McPhail M, Connolly B, Ratnayake G, Chan P, Hopkinson NS, Phadke R, Dew T, Sidhu PS, Velloso C, Seymour J, Agley CC, Selby A, Limb M, Edwards LM, Smith K, Rowlerson A, Rennie MJ, Moxham J, Harridge SD, Hart N, Montgomery HE. Acute skeletal muscle wasting in critical illness. JAMA. 2013 Oct 16;310(15):1591-600. Erratum in: JAMA. 2014 Feb 12;311(6):625. Padhke, Rahul [corrected to Phadke, Rahul]. DOI: https://doi.org/10.1001/jama.2013.278481
McClafferty B, Umer I, Fye G, Kepko D, Kalayanamitra R, Shahid Z, Ramgobin D, Cai A, Groff A, Bhandari A, Aggarwal CS, Patel R, Bhatt D, Polimera H, Sahu N, Vunnam R, Golamari R, Kumar A, Jain R. Approach to critical illness myopathy and polyneuropathy in the older SARS-CoV-2 patients. J Clin Neurosci. 2020 Sep;79:241-245. DOI: https://doi.org/10.1016/j.jocn.2020.07.058
Lad H, Saumur TM, Herridge MS, Dos Santos CC, Mathur S, Batt J, Gilbert PM. Intensive Care Unit-Acquired Weakness: Not just Another Muscle Atrophying Condition. Int J Mol Sci. 2020 Oct 22;21(21):7840. DOI: https://doi.org/10.3390/ijms21217840
Morley JE, Kalantar-Zadeh K, Anker SD. COVID-19: a major cause of cachexia and sarcopenia? J Cachexia Sarcopenia Muscle. 2020 Aug;11(4):863-865. DOI: https://doi.org/10.1002/jcsm.12589
Damian MS, Wijdicks EFM. The clinical management of neuromuscular disorders in intensive care. Neuromuscul Disord. 2019 Feb;29(2):85-96. DOI: https://doi.org/10.1016/j.nmd.2018.12.005
Hermans G, Van den Berghe G. Clinical review: intensive care unit acquired weakness. Crit Care. 2015 Aug 5;19(1):274. DOI: https://doi.org/10.1186/s13054-015-0993-7
Latronico N, Herridge M, Hopkins RO, Angus D, Hart N, Hermans G, Iwashyna T, Arabi Y, Citerio G, Ely EW, Hall J, Mehta S, Puntillo K, Van den Hoeven J, Wunsch H, Cook D, Dos Santos C, Rubenfeld G, Vincent JL, Van den Berghe G, Azoulay E, Needham DM. The ICM research agenda on intensive care unit-acquired weakness. Intensive Care Med. 2017 Sep;43(9):1270-1281. DOI: https://doi.org/10.1007/s00134-017-4757-5
Piva S, Fagoni N, Latronico N. Intensive care unit-acquired weakness: unanswered questions and targets for future research. F1000Res. 2019 Apr 17;8:F1000 Faculty Rev-508. doi: 10.12688/f1000research.17376.1. DOI: https://doi.org/10.12688/f1000research.17376.1
Latronico N, Bolton CF. Critical illness polyneuropathy and myopathy: a major cause of muscle weakness and paralysis. Lancet Neurol. 2011 Oct;10(10):931-41. DOI: https://doi.org/10.1016/S1474-4422(11)70178-8
Fan E, Cheek F, Chlan L, Gosselink R, Hart N, Herridge MS, Hopkins RO, Hough CL, Kress JP, Latronico N, Moss M, Needham DM, Rich MM, Stevens RD, Wilson KC, Winkelman C, Zochodne DW, Ali NA; ATS Committee on ICU-acquired Weakness in Adults; American Thoracic Society. An official American Thoracic Society Clinical Practice guideline: the diagnosis of intensive care unit-acquired weakness in adults. Am J Respir Crit Care Med. 2014 Dec 15;190(12):1437-46. DOI: https://doi.org/10.1164/rccm.201411-2011ST
Kress JP, Hall JB. ICU-acquired weakness and recovery from critical illness. N Engl J Med. 2014 Jul 17;371(3):287-8. DOI: https://doi.org/10.1056/NEJMc1406274
Yang T, Li Z, Jiang L, Wang Y, Xi X. Risk factors for intensive care unit-acquired weakness: A systematic review and meta-analysis. Acta Neurol Scand. 2018 Aug;138(2):104-114. DOI: https://doi.org/10.1111/ane.12964
Hermans G, Wilmer A, Meersseman W, Milants I, Wouters PJ, Bobbaers H, Bruyninckx F, Van den Berghe G. Impact of intensive insulin therapy on neuromuscular complications and ventilator dependency in the medical intensive care unit. Am J Respir Crit Care Med. 2007 Mar 1;175(5):480-9. DOI: https://doi.org/10.1164/rccm.200605-665OC
Latronico N, Gosselink R. A guided approach to diagnose severe muscle weakness in the intensive care unit. Rev Bras Ter Intensiva. 2015 Jul-Sep;27(3):199-201. DOI: https://doi.org/10.5935/0103-507X.20150036
Wolfe KS, Patel BK, MacKenzie EL, Giovanni SP, Pohlman AS, Churpek MM, Hall JB, Kress JP. Impact of Vasoactive Medications on ICU-Acquired Weakness in Mechanically Ventilated Patients. Chest. 2018 Oct;154(4):781-787. DOI: https://doi.org/10.1016/j.chest.2018.07.016
National Heart, Lung, and Blood Institute PETAL Clinical Trials Network, Moss M, Huang DT, Brower RG, Ferguson ND, Ginde AA, Gong MN, Grissom CK, Gundel S, Hayden D, Hite RD, Hou PC, Hough CL, Iwashyna TJ, Khan A, Liu KD, Talmor D, Thompson BT, Ulysse CA, Yealy DM, Angus DC. Early Neuromuscular Blockade in the Acute Respiratory Distress Syndrome. N Engl J Med. 2019 May 23;380(21):1997-2008. DOI: https://doi.org/10.1056/NEJMoa1901686
Bourenne J, Hraiech S, Roch A, Gainnier M, Papazian L, Forel JM. Sedation and neuromuscular blocking agents in acute respiratory distress syndrome. Ann Transl Med. 2017 Jul;5(14):291. DOI: https://doi.org/10.21037/atm.2017.07.19
deBacker J, Hart N, Fan E. Neuromuscular Blockade in the 21st Century Management of the Critically Ill Patient. Chest. 2017 Mar;151(3):697-706. DOI: https://doi.org/10.1016/j.chest.2016.10.040
Wieske L, van Hest RM, Witteveen E, Verhamme C, Schultz MJ, van Schaik IN, Horn J. Is gentamicin affecting the neuromuscular system of critically ill patients? Intensive Care Med. 2015 Apr;41(4):727-8. DOI: https://doi.org/10.1007/s00134-015-3731-3
Parry SM, Puthucheary ZA. The impact of extended bed rest on the musculoskeletal system in the critical care environment. Extrem Physiol Med. 2015 Oct 9;4:16. DOI: https://doi.org/10.1186/s13728-015-0036-7
De Jonghe B, Sharshar T, Lefaucheur JP, Authier FJ, Durand-Zaleski I, Boussarsar M, Cerf C, Renaud E, Mesrati F, Carlet J, Raphaël JC, Outin H, Bastuji-Garin S; Groupe de Réflexion et d'Etude des Neuromyopathies en Réanimation. Paresis acquired in the intensive care unit: a prospective multicenter study. JAMA. 2002 Dec 11;288(22):2859-67. DOI: https://doi.org/10.1001/jama.288.22.2859
Chlan LL, Tracy MF, Guttormson J, Savik K. Peripheral muscle strength and correlates of muscle weakness in patients receiving mechanical ventilation. Am J Crit Care. 2015 Nov;24(6):e91-8. DOI: https://doi.org/10.4037/ajcc2015277
Kramer CL. Intensive Care Unit-Acquired Weakness. Neurol Clin. 2017 Nov;35(4):723-736. DOI: https://doi.org/10.1016/j.ncl.2017.06.008
Herridge MS, Tansey CM, Matté A, Tomlinson G, Diaz-Granados N, Cooper A, Guest CB, Mazer CD, Mehta S, Stewart TE, Kudlow P, Cook D, Slutsky AS, Cheung AM; Canadian Critical Care Trials Group. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med. 2011 Apr 7;364(14):1293-304. DOI: https://doi.org/10.1056/NEJMoa1011802
Fan E, Dowdy DW, Colantuoni E, Mendez-Tellez PA, Sevransky JE, Shanholtz C, Himmelfarb CR, Desai SV, Ciesla N, Herridge MS, Pronovost PJ, Needham DM. Physical complications in acute lung injury survivors: a two-year longitudinal prospective study. Crit Care Med. 2014 Apr;42(4):849-59. DOI: https://doi.org/10.1097/CCM.0000000000000040
Parry SM, Berney S, Granger CL, Dunlop DL, Murphy L, El-Ansary D, Koopman R, Denehy L. A new two-tier strength assessment approach to the diagnosis of weakness in intensive care: an observational study. Crit Care. 2015 Feb 26;19(1):52. DOI: https://doi.org/10.1186/s13054-015-0780-5
Vanpee G, Hermans G, Segers J, Gosselink R. Assessment of limb muscle strength in critically ill patients: a systematic review. Crit Care Med. 2014 Mar;42(3):701-11. DOI: https://doi.org/10.1097/CCM.0000000000000030
Denehy L, de Morton NA, Skinner EH, Edbrooke L, Haines K, Warrillow S, Berney S. A physical function test for use in the intensive care unit: validity, responsiveness, and predictive utility of the physical function ICU test (scored). Phys Ther. 2013 Dec;93(12):1636-45. DOI: https://doi.org/10.2522/ptj.20120310
Huang M, Chan KS, Zanni JM, Parry SM, Neto SG, Neto JA, da Silva VZ, Kho ME, Needham DM. Functional Status Score for the ICU: An International Clinimetric Analysis of Validity, Responsiveness, and Minimal Important Difference. Crit Care Med. 2016 Dec;44(12):e1155-e1164. DOI: https://doi.org/10.1097/CCM.0000000000001949
Chan KS, Pfoh ER, Denehy L, Elliott D, Holland AE, Dinglas VD, Needham DM. Construct validity and minimal important difference of 6-minute walk distance in survivors of acute respiratory failure. Chest. 2015 May;147(5):1316-1326. DOI: https://doi.org/10.1378/chest.14-1808
Supinski GS, Westgate P, Callahan LA. Correlation of maximal inspiratory pressure to transdiaphragmatic twitch pressure in intensive care unit patients. Crit Care. 2016 Mar 23;20:77. DOI: https://doi.org/10.1186/s13054-016-1247-z
Doorduin J, van Hees HW, van der Hoeven JG, Heunks LM. Monitoring of the respiratory muscles in the critically ill. Am J Respir Crit Care Med. 2013 Jan 1;187(1):20-7. DOI: https://doi.org/10.1164/rccm.201206-1117CP
Dres M, Goligher EC, Heunks LMA, Brochard LJ. Critical illness-associated diaphragm weakness. Intensive Care Med. 2017 Oct;43(10):1441-1452. DOI: https://doi.org/10.1007/s00134-017-4928-4
Qian Z, Yang M, Li L, Chen Y. Ultrasound assessment of diaphragmatic dysfunction as a predictor of weaning outcome from mechanical ventilation: a systematic review and meta-analysis. BMJ Open. 2018 Oct 4;8(9):e021189. DOI: https://doi.org/10.1136/bmjopen-2017-021189
Friedrich O, Reid MB, Van den Berghe G, Vanhorebeek I, Hermans G, Rich MM, Larsson L. The Sick and the Weak: Neuropathies/Myopathies in the Critically Ill. Physiol Rev. 2015 Jul;95(3):1025-109. DOI: https://doi.org/10.1152/physrev.00028.2014
Kelmenson DA, Quan D, Moss M. What is the diagnostic accuracy of single nerve conduction studies and muscle ultrasound to identify critical illness polyneuromyopathy: a prospective cohort study. Crit Care. 2018 Dec 17;22(1):342. DOI: https://doi.org/10.1186/s13054-018-2281-9
Appleton RT, Kinsella J, Quasim T. The incidence of intensive care unit-acquired weakness syndromes: A systematic review. J Intensive Care Soc. 2015 May;16(2):126-136. DOI: https://doi.org/10.1177/1751143714563016
Formenti P, Umbrello M, Coppola S, Froio S, Chiumello D. Clinical review: peripheral muscular ultrasound in the ICU. Ann Intensive Care. 2019 May 17;9(1):57. DOI: https://doi.org/10.1186/s13613-019-0531-x
Joskova V, Patkova A, Havel E, Najpaverova S, Uramova D, Kovarik M, Zadak Z, Hronek M. Critical evaluation of muscle mass loss as a prognostic marker of morbidity in critically ill patients and methods for its determination. J Rehabil Med. 2018 Aug 22;50(8):696-704. DOI: https://doi.org/10.2340/16501977-2368
Witteveen E, Sommers J, Wieske L, Doorduin J, van Alfen N, Schultz MJ, van Schaik IN, Horn J, Verhamme C. Diagnostic accuracy of quantitative neuromuscular ultrasound for the diagnosis of intensive care unit - acquired weakness: a cross-sectional observational study. Ann Intensive Care. 2017 Dec;7(1):40. DOI: https://doi.org/10.1186/s13613-017-0263-8
Derde S, Hermans G, Derese I, Güiza F, Hedström Y, Wouters PJ, Bruyninckx F, D'Hoore A, Larsson L, Van den Berghe G, Vanhorebeek I. Muscle atrophy and preferential loss of myosin in prolonged critically ill patients. Crit Care Med. 2012 Jan;40(1):79-89. DOI: https://doi.org/10.1097/CCM.0b013e31822d7c18
Kackstein K, Teren A, Matsumoto Y, Mangner N, Möbius-Winkler S, Linke A, Schuler G, Punkt K, Adams V. Impact of angiotensin II on skeletal muscle metabolism and function in mice: contribution of IGF-1, Sirtuin-1 and PGC-1α. Acta Histochem. 2013 May;115(4):363-70. DOI: https://doi.org/10.1016/j.acthis.2012.09.009
Lokireddy S, Mouly V, Butler-Browne G, Gluckman PD, Sharma M, Kambadur R, McFarlane C. Myostatin promotes the wasting of human myoblast cultures through promoting ubiquitin-proteasome pathway-mediated loss of sarcomeric proteins. Am J Physiol Cell Physiol. 2011 Dec;301(6):C1316-24.. Erratum in: Am J Physiol Cell Physiol. 2014 Dec 15;307(12):C1152. DOI: https://doi.org/10.1152/ajpcell.00114.2011
van Gassel RJJ, Baggerman MR, van de Poll MCG. Metabolic aspects of muscle wasting during critical illness. Curr Opin Clin Nutr Metab Care. 2020 Mar;23(2):96-101. DOI: https://doi.org/10.1097/MCO.0000000000000628
Sidiras G, Patsaki I, Karatzanos E, Dakoutrou M, Kouvarakos A, Mitsiou G, Routsi C, Stranjalis G, Nanas S, Gerovasili V. Long term follow-up of quality of life and functional ability in patients with ICU acquired Weakness - A post hoc analysis. J Crit Care. 2019 Oct;53:223-230. DOI: https://doi.org/10.1016/j.jcrc.2019.06.022
Hermans G, Van Mechelen H, Clerckx B, Vanhullebusch T, Mesotten D, Wilmer A, Casaer MP, Meersseman P, Debaveye Y, Van Cromphaut S, Wouters PJ, Gosselink R, Van den Berghe G. Acute outcomes and 1-year mortality of intensive care unit-acquired weakness. A cohort study and propensity-matched analysis. Am J Respir Crit Care Med. 2014 Aug 15;190(4):410-20. DOI: https://doi.org/10.1164/rccm.201312-2257OC
Singer P, Blaser AR, Berger MM, Alhazzani W, Calder PC, Casaer MP, Hiesmayr M, Mayer K, Montejo JC, Pichard C, Preiser JC, van Zanten ARH, Oczkowski S, Szczeklik W, Bischoff SC. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr. 2019 Feb;38(1):48-79. DOI: https://doi.org/10.1016/j.clnu.2018.08.037
Batt J, Herridge M, Dos Santos C. Mechanism of ICU-acquired weakness: skeletal muscle loss in critical illness. Intensive Care Med. 2017 Dec;43(12):1844-1846. DOI: https://doi.org/10.1007/s00134-017-4758-4
Gandotra S, Lovato J, Case D, Bakhru RN, Gibbs K, Berry M, Files DC, Morris PE. Physical Function Trajectories in Survivors of Acute Respiratory Failure. Ann Am Thorac Soc. 2019 Apr;16(4):471-477. DOI: https://doi.org/10.1513/AnnalsATS.201806-375OC
Kalamgi RC, Larsson L. Mechanical Signaling in the Pathophysiology of Critical Illness Myopathy. Front Physiol. 2016 Feb 4;7:23. DOI: https://doi.org/10.3389/fphys.2016.00023
Sandri M. Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Int J Biochem Cell Biol. 2013 Oct;45(10):2121-9. DOI: https://doi.org/10.1016/j.biocel.2013.04.023
Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 2013 Sep;280(17):4294-314. DOI: https://doi.org/10.1111/febs.12253
Vanhorebeek I, Gunst J, Derde S, Derese I, Boussemaere M, Güiza F, Martinet W, Timmermans JP, D'Hoore A, Wouters PJ, Van den Berghe G. Insufficient activation of autophagy allows cellular damage to accumulate in critically ill patients. J Clin Endocrinol Metab. 2011 Apr;96(4):E633-45. DOI: https://doi.org/10.1210/jc.2010-2563
Chen H, Vermulst M, Wang YE, Chomyn A, Prolla TA, McCaffery JM, Chan DC. Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell. 2010 Apr 16;141(2):280-9. DOI: https://doi.org/10.1016/j.cell.2010.02.026
Romanello V, Guadagnin E, Gomes L, Roder I, Sandri C, Petersen Y, Milan G, Masiero E, Del Piccolo P, Foretz M, Scorrano L, Rudolf R, Sandri M. Mitochondrial fission and remodelling contributes to muscle atrophy. EMBO J. 2010 May 19;29(10):1774-85. DOI: https://doi.org/10.1038/emboj.2010.60
Latronico N, Friedrich O. Electrophysiological investigations of peripheral nerves and muscles: a method for looking at cell dysfunction in the critically ill patients. Crit Care. 2019 Jan 29;23(1):33. DOI: https://doi.org/10.1186/s13054-019-2331-y
Rudolf R, Deschenes MR, Sandri M. Neuromuscular junction degeneration in muscle wasting. Curr Opin Clin Nutr Metab Care. 2016 May;19(3):177-81. DOI: https://doi.org/10.1097/MCO.0000000000000267
Weber-Carstens S, Deja M, Koch S, Spranger J, Bubser F, Wernecke KD, Spies CD, Spuler S, Keh D. Risk factors in critical illness myopathy during the early course of critical illness: a prospective observational study. Crit Care. 2010;14(3):R119. DOI: https://doi.org/10.1186/cc9074
Baldwin CE, Bersten AD. Myopathic characteristics in septic mechanically ventilated patients. Curr Opin Clin Nutr Metab Care. 2015 May;18(3):240-7. DOI: https://doi.org/10.1097/MCO.0000000000000165
Tuttle CSL, Thang LAN, Maier AB. Markers of inflammation and their association with muscle strength and mass: A systematic review and meta-analysis. Ageing Res Rev. 2020 Dec;64:101185. DOI: https://doi.org/10.1016/j.arr.2020.101185
Shepherd SJ, Newman R, Brett SJ, Griffith DM; Enhancing Rehabilitation After Critical Illness Programme Study Investigators. Pharmacological Therapy for the Prevention and Treatment of Weakness After Critical Illness: A Systematic Review. Crit Care Med. 2016 Jun;44(6):1198-205. DOI: https://doi.org/10.1097/CCM.0000000000001652
Walsh TS. Pharmacologic Therapies for ICU-Acquired Weakness: A Long Road Ahead. Crit Care Med. 2016 Jun;44(6):1245-6. DOI: https://doi.org/10.1097/CCM.0000000000001705
van Zanten ARH, De Waele E, Wischmeyer PE. Nutrition therapy and critical illness: practical guidance for the ICU, post-ICU, and long-term convalescence phases. Crit Care. 2019 Nov 21;23(1):368. DOI: https://doi.org/10.1186/s13054-019-2657-5
Allingstrup MJ, Kondrup J, Wiis J, Claudius C, Pedersen UG, Hein-Rasmussen R, Bjerregaard MR, Steensen M, Jensen TH, Lange T, Madsen MB, Møller MH, Perner A. Early goal-directed nutrition versus standard of care in adult intensive care patients: the single-centre, randomised, outcome assessor-blinded EAT-ICU trial. Intensive Care Med. 2017 Nov;43(11):1637-1647. DOI: https://doi.org/10.1007/s00134-017-4880-3
Ferrie S, Allman-Farinelli M, Daley M, Smith K. Protein Requirements in the Critically Ill: A Randomized Controlled Trial Using Parenteral Nutrition. JPEN J Parenter Enteral Nutr. 2016 Aug;40(6):795-805. DOI: https://doi.org/10.1177/0148607115618449
van Zanten ARH, Petit L, De Waele J, Kieft H, de Wilde J, van Horssen P, Klebach M, Hofman Z. Very high intact-protein formula successfully provides protein intake according to nutritional recommendations in overweight critically ill patients: a double-blind randomized trial. Crit Care. 2018 Jun 12;22(1):156. DOI: https://doi.org/10.1186/s13054-018-2070-5
Casaer MP, Mesotten D, Hermans G, Wouters PJ, Schetz M, Meyfroidt G, Van Cromphaut S, Ingels C, Meersseman P, Muller J, Vlasselaers D, Debaveye Y, Desmet L, Dubois J, Van Assche A, Vanderheyden S, Wilmer A, Van den Berghe G. Early versus late parenteral nutrition in critically ill adults. N Engl J Med. 2011 Aug 11;365(6):506-17. DOI: https://doi.org/10.1056/NEJMoa1102662
Hermans G, Casaer MP, Clerckx B, Güiza F, Vanhullebusch T, Derde S, Meersseman P, Derese I, Mesotten D, Wouters PJ, Van Cromphaut S, Debaveye Y, Gosselink R, Gunst J, Wilmer A, Van den Berghe G, Vanhorebeek I. Effect of tolerating macronutrient deficit on the development of intensive-care unit acquired weakness: a subanalysis of the EPaNIC trial. Lancet Respir Med. 2013 Oct;1(8):621-629. DOI: https://doi.org/10.1016/S2213-2600(13)70183-8
Sundström-Rehal M, Tardif N, Rooyackers O. Can exercise and nutrition stimulate muscle protein gain in the ICU patient? Curr Opin Clin Nutr Metab Care. 2019 Mar;22(2):146-151. DOI: https://doi.org/10.1097/MCO.0000000000000548
de Jonghe B, Lacherade JC, Sharshar T, Outin H. Intensive care unit-acquired weakness: risk factors and prevention. Crit Care Med. 2009 Oct;37(10 Suppl):S309-15. DOI: https://doi.org/10.1097/CCM.0b013e3181b6e64c
Fan E. Critical illness neuromyopathy and the role of physical therapy and rehabilitation in critically ill patients. Respir Care. 2012 Jun;57(6):933-44; discussion 944-6. DOI: https://doi.org/10.4187/respcare.01634
Chen YW, Gregory CM, Scarborough MT, Shi R, Walter GA, Vandenborne K. Transcriptional pathways associated with skeletal muscle disuse atrophy in humans. Physiol Genomics. 2007 Nov 14;31(3):510-20. DOI: https://doi.org/10.1152/physiolgenomics.00115.2006
Booth FW. Effect of limb immobilization on skeletal muscle. J Appl Physiol Respir Environ Exerc Physiol. 1982 May;52(5):1113-8. DOI: https://doi.org/10.1152/jappl.1982.52.5.1113
Adkins DL, Boychuk J, Remple MS, Kleim JA. Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. J Appl Physiol (1985). 2006 Dec;101(6):1776-82. DOI: https://doi.org/10.1152/japplphysiol.00515.2006
Folland JP, Williams AG. The adaptations to strength training : morphological and neurological contributions to increased strength. Sports Med. 2007;37(2):145-68. DOI: https://doi.org/10.2165/00007256-200737020-00004
Matta Mello Portugal E, Cevada T, Sobral Monteiro-Junior R, Teixeira Guimarães T, da Cruz Rubini E, Lattari E, Blois C, Camaz Deslandes A. Neuroscience of exercise: from neurobiology mechanisms to mental health. Neuropsychobiology. 2013;68(1):1-14. DOI: https://doi.org/10.1159/000350946
Rivera-Brown AM, Frontera WR. Principles of exercise physiology: responses to acute exercise and long-term adaptations to training. PM R. 2012 Nov;4(11):797-804. DOI: https://doi.org/10.1016/j.pmrj.2012.10.007
Ogasawara R, Jensen TE, Goodman CA, Hornberger TA. Resistance Exercise-Induced Hypertrophy: A Potential Role for Rapamycin-Insensitive mTOR. Exerc Sport Sci Rev. 2019 Jul;47(3):188-194. DOI: https://doi.org/10.1249/JES.0000000000000189
Hashem MD, Nelliot A, Needham DM. Early Mobilization and Rehabilitation in the ICU: Moving Back to the Future. Respir Care. 2016 Jul;61(7):971-9. DOI: https://doi.org/10.4187/respcare.04741
Saitoh M, Ishida J, Doehner W, von Haehling S, Anker MS, Coats AJS, Anker SD, Springer J. Sarcopenia, cachexia, and muscle performance in heart failure: Review update 2016. Int J Cardiol. 2017 Jul 1;238:5-11. DOI: https://doi.org/10.1016/j.ijcard.2017.03.155
Anekwe DE, Biswas S, Bussières A, Spahija J. Early rehabilitation reduces the likelihood of developing intensive care unit-acquired weakness: a systematic review and meta-analysis. Physiotherapy. 2020 Jun;107:1-10. DOI: https://doi.org/10.1016/j.physio.2019.12.004
Hickmann CE, Castanares-Zapatero D, Deldicque L, Van den Bergh P, Caty G, Robert A, Roeseler J, Francaux M, Laterre PF. Impact of Very Early Physical Therapy During Septic Shock on Skeletal Muscle: A Randomized Controlled Trial. Crit Care Med. 2018 Sep;46(9):1436-1443. DOI: https://doi.org/10.1097/CCM.0000000000003263
Wageck B, Nunes GS, Silva FL, Damasceno MC, de Noronha M. Application and effects of neuromuscular electrical stimulation in critically ill patients: systematic review. Med Intensiva. 2014 Oct;38(7):444-54. DOI: https://doi.org/10.1016/j.medin.2013.12.003
Zayed Y, Kheiri B, Barbarawi M, Chahine A, Rashdan L, Chintalapati S, Bachuwa G, Al-Sanouri I. Effects of neuromuscular electrical stimulation in critically ill patients: A systematic review and meta-analysis of randomised controlled trials. Aust Crit Care. 2020 Mar;33(2):203-210. DOI: https://doi.org/10.1016/j.aucc.2019.04.003
Fuke R, Hifumi T, Kondo Y, Hatakeyama J, Takei T, Yamakawa K, Inoue S, Nishida O. Early rehabilitation to prevent postintensive care syndrome in patients with critical illness: a systematic review and meta-analysis. BMJ Open. 2018 May 5;8(5):e019998. DOI: https://doi.org/10.1136/bmjopen-2017-019998
Fossat G, Baudin F, Courtes L, Bobet S, Dupont A, Bretagnol A, Benzekri-Lefèvre D, Kamel T, Muller G, Bercault N, Barbier F, Runge I, Nay MA, Skarzynski M, Mathonnet A, Boulain T. Effect of In-Bed Leg Cycling and Electrical Stimulation of the Quadriceps on Global Muscle Strength in Critically Ill Adults: A Randomized Clinical Trial. JAMA. 2018 Jul 24;320(4):368-378. DOI: https://doi.org/10.1001/jama.2018.9592
Santos RA, Simoes e Silva AC, Maric C, Silva DM, Machado RP, de Buhr I, Heringer-Walther S, Pinheiro SV, Lopes MT, Bader M, Mendes EP, Lemos VS, Campagnole-Santos MJ, Schultheiss HP, Speth R, Walther T. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8258-63. DOI: https://doi.org/10.1073/pnas.1432869100
Ferrario CM, Trask AJ, Jessup JA. Advances in biochemical and functional roles of angiotensin-converting enzyme 2 and angiotensin-(1-7) in regulation of cardiovascular function. Am J Physiol Heart Circ Physiol. 2005 Dec;289(6):H2281-90. DOI: https://doi.org/10.1152/ajpheart.00618.2005
Iwata M, Cowling RT, Gurantz D, Moore C, Zhang S, Yuan JX, Greenberg BH. Angiotensin-(1-7) binds to specific receptors on cardiac fibroblasts to initiate antifibrotic and antitrophic effects. Am J Physiol Heart Circ Physiol. 2005 Dec;289(6):H2356-63. DOI: https://doi.org/10.1152/ajpheart.00317.2005
Tallant EA, Ferrario CM, Gallagher PE. Angiotensin-(1-7) inhibits growth of cardiac myocytes through activation of the mas receptor. Am J Physiol Heart Circ Physiol. 2005 Oct;289(4):H1560-6. DOI: https://doi.org/10.1152/ajpheart.00941.2004
Acuña MJ, Pessina P, Olguin H, Cabrera D, Vio CP, Bader M, Muñoz-Canoves P, Santos RA, Cabello-Verrugio C, Brandan E. Restoration of muscle strength in dystrophic muscle by angiotensin-1-7 through inhibition of TGF-β signalling. Hum Mol Genet. 2014 Mar 1;23(5):1237-49. DOI: https://doi.org/10.1093/hmg/ddt514
Echeverría-Rodríguez O, Del Valle-Mondragón L, Hong E. Angiotensin 1-7 improves insulin sensitivity by increasing skeletal muscle glucose uptake in vivo. Peptides. 2014 Jan;51:26-30. DOI: https://doi.org/10.1016/j.peptides.2013.10.022
Muñoz MC, Giani JF, Burghi V, Mayer MA, Carranza A, Taira CA, Dominici FP. The Mas receptor mediates modulation of insulin signaling by angiotensin-(1-7). Regul Pept. 2012 Aug 20;177(1-3):1-11. DOI: https://doi.org/10.1016/j.regpep.2012.04.001
Cabello-Verrugio C, Rivera JC, Garcia D. Skeletal muscle wasting: new role of nonclassical renin-angiotensin system. Curr Opin Clin Nutr Metab Care. 2017 May;20(3):158-163. DOI: https://doi.org/10.1097/MCO.0000000000000361
Morales MG, Abrigo J, Acuña MJ, Santos RA, Bader M, Brandan E, Simon F, Olguin H, Cabrera D, Cabello-Verrugio C. Angiotensin-(1-7) attenuates disuse skeletal muscle atrophy in mice via its receptor, Mas. Dis Model Mech. 2016 Apr;9(4):441-9. DOI: https://doi.org/10.1242/dmm.023390
Cisternas F, Morales MG, Meneses C, Simon F, Brandan E, Abrigo J, Vazquez Y, Cabello-Verrugio C. Angiotensin-(1-7) decreases skeletal muscle atrophy induced by angiotensin II through a Mas receptor-dependent mechanism. Clin Sci (Lond). 2015 Mar;128(5):307-19. DOI: https://doi.org/10.1042/CS20140215
Meneses C, Morales MG, Abrigo J, Simon F, Brandan E, Cabello-Verrugio C. The angiotensin-(1-7)/Mas axis reduces myonuclear apoptosis during recovery from angiotensin II-induced skeletal muscle atrophy in mice. Pflugers Arch. 2015 Sep;467(9):1975-84. DOI: https://doi.org/10.1007/s00424-014-1617-9
Organization, W. H. Coronavirus Disease (COVID-19) Pandemic Situation Reports. accessed on April 27, 2021 (2021).
Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC, Du B, Li LJ, Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, Chen PY, Xiang J, Li SY, Wang JL, Liang ZJ, Peng YX, Wei L, Liu Y, Hu YH, Peng P, Wang JM, Liu JY, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye CJ, Zhu SY, Zhong NS; China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020 Apr 30;382(18):1708-1720. DOI: https://doi.org/10.1056/NEJMoa2002032
Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA. 2020 Aug 25;324(8):782-793. DOI: https://doi.org/10.1001/jama.2020.12839
Pinzon RT, Wijaya VO, Buana RB, Al Jody A, Nunsio PN. Neurologic Characteristics in Coronavirus Disease 2019 (COVID-19): A Systematic Review and Meta-Analysis. Front Neurol. 2020 May 29;11:565. DOI: https://doi.org/10.3389/fneur.2020.00565
Wang JL, Wang JT, Yu CJ, Chen YC, Hsueh PR, Hsiao CH, Kao CL, Chang SC, Yang PC. Rhabdomyolysis associated with probable SARS. Am J Med. 2003 Oct 1;115(5):421-2. DOI: https://doi.org/10.1016/S0002-9343(03)00448-0
Nassar MS, Bakhrebah MA, Meo SA, Alsuabeyl MS, Zaher WA. Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection: epidemiology, pathogenesis and clinical characteristics. Eur Rev Med Pharmacol Sci. 2018 Aug;22(15):4956-4961.
Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, Wu Y, Zhang L, Yu Z, Fang M, Yu T, Wang Y, Pan S, Zou X, Yuan S, Shang Y. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020 May;8(5):475-481. Epub 2020 Feb 24. Erratum in: Lancet Respir Med. 2020 Apr;8(4):e26. DOI: https://doi.org/10.1016/S2213-2600(20)30079-5
Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, Villamizar-Peña R, Holguin-Rivera Y, Escalera-Antezana JP, Alvarado-Arnez LE, Bonilla-Aldana DK, Franco-Paredes C, Henao-Martinez AF, Paniz-Mondolfi A, Lagos-Grisales GJ, Ramírez-Vallejo E, Suárez JA, Zambrano LI, Villamil-Gómez WE, Balbin-Ramon GJ, Rabaan AA, Harapan H, Dhama K, Nishiura H, Kataoka H, Ahmad T, Sah R; Latin American Network of Coronavirus Disease 2019-COVID-19 Research (LANCOVID-19). Electronic address: https:// www. lancovid.org. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis. 2020 Mar-Apr;34:101623. DOI: https://doi.org/10.20944/preprints202002.0378.v3
Candan SA, Elibol N, Abdullahi A. Consideration of prevention and management of long-term consequences of post-acute respiratory distress syndrome in patients with COVID-19. Physiother Theory Pract. 2020 Jun;36(6):663-668. DOI: https://doi.org/10.1080/09593985.2020.1766181
Bhatraju PK, Ghassemieh BJ, Nichols M, Kim R, Jerome KR, Nalla AK, Greninger AL, Pipavath S, Wurfel MM, Evans L, Kritek PA, West TE, Luks A, Gerbino A, Dale CR, Goldman JD, O'Mahony S, Mikacenic C. Covid-19 in Critically Ill Patients in the Seattle Region - Case Series. N Engl J Med. 2020 May 21;382(21):2012-2022. DOI: https://doi.org/10.1056/NEJMoa2004500
Bagnato S, Boccagni C, Marino G, Prestandrea C, D'Agostino T, Rubino F. Critical illness myopathy after COVID-19. Int J Infect Dis. 2020 Oct;99:276-278. DOI: https://doi.org/10.1016/j.ijid.2020.07.072
Madia F, Merico B, Primiano G, Cutuli SL, De Pascale G, Servidei S. Acute myopathic quadriplegia in patients with COVID-19 in the intensive care unit. Neurology. 2020 Sep 15;95(11):492-494. DOI: https://doi.org/10.1212/WNL.0000000000010280
Versace V, Sebastianelli L, Ferrazzoli D, Saltuari L, Kofler M, Löscher W, Uncini A. Case Report: Myopathy in Critically Ill COVID-19 Patients: A Consequence of Hyperinflammation? Front Neurol. 2021 Jan 29;12:625144. DOI: https://doi.org/10.3389/fneur.2021.625144
Rodriguez B, Branca M, Gutt-Will M, Roth M, Söll N, Nansoz S, Cameron DR, Tankisi H, Tan SV, Bostock H, Raabe A, Schefold JC, Jakob SM, Z'Graggen WJ. Development and early diagnosis of critical illness myopathy in COVID-19 associated acute respiratory distress syndrome. J Cachexia Sarcopenia Muscle. 2022 Jun;13(3):1883-1895. DOI: https://doi.org/10.1002/jcsm.12989
Cabañes-Martínez L, Villadóniga M, González-Rodríguez L, Araque L, Díaz-Cid A, Ruz-Caracuel I, Pian H, Sánchez-Alonso S, Fanjul S, Del Álamo M, Regidor I. Neuromuscular involvement in COVID-19 critically ill patients. Clin Neurophysiol. 2020 Dec;131(12):2809-2816. DOI: https://doi.org/10.1016/j.clinph.2020.09.017
Tankisi H, Tankisi A, Harbo T, Markvardsen LK, Andersen H, Pedersen TH. Critical illness myopathy as a consequence of Covid-19 infection. Clin Neurophysiol. 2020 Aug;131(8):1931-1932. DOI: https://doi.org/10.1016/j.clinph.2020.06.003
Van Aerde N, Van den Berghe G, Wilmer A, Gosselink R, Hermans G; COVID-19 Consortium. Intensive care unit acquired muscle weakness in COVID-19 patients. Intensive Care Med. 2020 Nov;46(11):2083-2085. DOI: https://doi.org/10.1007/s00134-020-06244-7
Hojyo S, Uchida M, Tanaka K, Hasebe R, Tanaka Y, Murakami M, Hirano T. How COVID-19 induces cytokine storm with high mortality. Inflamm Regen. 2020 Oct 1;40:37. DOI: https://doi.org/10.1186/s41232-020-00146-3
Vaninov N. In the eye of the COVID-19 cytokine storm. Nat Rev Immunol. 2020 May;20(5):277. DOI: https://doi.org/10.1038/s41577-020-0305-6
Conti P, Ronconi G, Caraffa A, Gallenga CE, Ross R, Frydas I, Kritas SK. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies. J Biol Regul Homeost Agents. 2020 March-April,;34(2):327-331.
Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020 Mar 28;395(10229):1054-1062. Epub 2020 Mar 11. Erratum in: Lancet. 2020 Mar 28;395(10229):1038. DOI: https://doi.org/10.1016/S0140-6736(20)30566-3
Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol. 2020 Mar 17;94(7):e00127-20. DOI: https://doi.org/10.1128/JVI.00127-20
VanderVeen BN, Fix DK, Montalvo RN, Counts BR, Smuder AJ, Murphy EA, Koh HJ, Carson JA. The regulation of skeletal muscle fatigability and mitochondrial function by chronically elevated interleukin-6. Exp Physiol. 2019 Mar;104(3):385-397. DOI: https://doi.org/10.1113/EP087429
Rudroff T, Fietsam AC, Deters JR, Bryant AD, Kamholz J. Post-COVID-19 Fatigue: Potential Contributing Factors. Brain Sci. 2020 Dec 19;10(12):1012. DOI: https://doi.org/10.3390/brainsci10121012
Chan JF, Zhang AJ, Yuan S, Poon VK, Chan CC, Lee AC, Chan WM, Fan Z, Tsoi HW, Wen L, Liang R, Cao J, Chen Y, Tang K, Luo C, Cai JP, Kok KH, Chu H, Chan KH, Sridhar S, Chen Z, Chen H, To KK, Yuen KY. Simulation of the Clinical and Pathological Manifestations of Coronavirus Disease 2019 (COVID-19) in a Golden Syrian Hamster Model: Implications for Disease Pathogenesis and Transmissibility. Clin Infect Dis. 2020 Dec 3;71(9):2428-2446. DOI: https://doi.org/10.1093/cid/ciaa325
McNab F, Mayer-Barber K, Sher A, Wack A, O'Garra A. Type I interferons in infectious disease. Nat Rev Immunol. 2015 Feb;15(2):87-103. DOI: https://doi.org/10.1038/nri3787
Gonzalez A, Orozco-Aguilar J, Achiardi O, Simon F, Cabello-Verrugio C. SARS-CoV-2/Renin-Angiotensin System: Deciphering the Clues for a Couple with Potentially Harmful Effects on Skeletal Muscle. Int J Mol Sci. 2020 Oct 24;21(21):7904. DOI: https://doi.org/10.3390/ijms21217904
Dandona P, Chaudhuri A, Ghanim H, Mohanty P. Proinflammatory effects of glucose and anti-inflammatory effect of insulin: relevance to cardiovascular disease. Am J Cardiol. 2007 Feb 19;99(4A):15B-26B. DOI: https://doi.org/10.1016/j.amjcard.2006.11.003
Ghazi L, Drawz P. Advances in understanding the renin-angiotensin-aldosterone system (RAAS) in blood pressure control and recent pivotal trials of RAAS blockade in heart failure and diabetic nephropathy. F1000Res. 2017 Mar 21;6:F1000 Faculty Rev-297. DOI: https://doi.org/10.12688/f1000research.9692.1
Warner FJ, Lew RA, Smith AI, Lambert DW, Hooper NM, Turner AJ. Angiotensin-converting enzyme 2 (ACE2), but not ACE, is preferentially localized to the apical surface of polarized kidney cells. J Biol Chem. 2005 Nov 25;280(47):39353-62. DOI: https://doi.org/10.1074/jbc.M508914200
Leung TW, Wong KS, Hui AC, To KF, Lai ST, Ng WF, Ng HK. Myopathic changes associated with severe acute respiratory syndrome: a postmortem case series. Arch Neurol. 2005 Jul;62(7):1113-7. DOI: https://doi.org/10.1001/archneur.62.7.1113
Finsterer J, Scorza FA. SARS-CoV-2-associated critical ill myopathy or pure toxic myopathy? Int J Infect Dis. 2020 Dec;101:56. Epub 2020 Sep 28. DOI: https://doi.org/10.1016/j.ijid.2020.09.1463
Andalib S, Biller J, Di Napoli M, Moghimi N, McCullough LD, Rubinos CA, O'Hana Nobleza C, Azarpazhooh MR, Catanese L, Elicer I, Jafari M, Liberati F, Camejo C, Torbey M, Divani AA. Peripheral Nervous System Manifestations Associated with COVID-19. Curr Neurol Neurosci Rep. 2021 Feb 14;21(3):9. DOI: https://doi.org/10.1007/s11910-021-01102-5
Pinal-Fernandez I, Casal-Dominguez M, Mammen AL. Immune-Mediated Necrotizing Myopathy. Curr Rheumatol Rep. 2018 Mar 26;20(4):21. DOI: https://doi.org/10.1007/s11926-018-0732-6
Totsuka M, Nakaji S, Suzuki K, Sugawara K, Sato K. Break point of serum creatine kinase release after endurance exercise. J Appl Physiol (1985). 2002 Oct;93(4):1280-6. DOI: https://doi.org/10.1152/japplphysiol.01270.2001
Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, Chang J, Hong C, Zhou Y, Wang D, Miao X, Li Y, Hu B. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020 Jun 1;77(6):683-690. DOI: https://doi.org/10.1001/jamaneurol.2020.1127
Murthy S, Gomersall CD, Fowler RA. Care for Critically Ill Patients With COVID-19. JAMA. 2020 Apr 21;323(15):1499-1500. DOI: https://doi.org/10.1001/jama.2020.3633
Wiertz CMH, Vints WAJ, Maas GJCM, Rasquin SMC, van Horn YY, Dremmen MPM, Hemmen B, Verbunt JA. COVID-19: Patient Characteristics in the First Phase of Postintensive Care Rehabilitation. Arch Rehabil Res Clin Transl. 2021 Jun;3(2):100108. DOI: https://doi.org/10.1016/j.arrct.2021.100108
Simpson R, Robinson L. Rehabilitation After Critical Illness in People With COVID-19 Infection. Am J Phys Med Rehabil. 2020 Jun;99(6):470-474. DOI: https://doi.org/10.1097/PHM.0000000000001443
Liu K, Nakamura K, Kudchadkar SR, Katsukawa H, Nydahl P, Ely EW, Takahashi K, Inoue S, Nishida O. Mobilization and Rehabilitation Practice in ICUs During the COVID-19 Pandemic. J Intensive Care Med. 2022 Apr 27:8850666221097644. DOI: https://doi.org/10.1177/08850666221097644
Smith V, Devane D, Nichol A, Roche D. Care bundles for improving outcomes in patients with COVID-19 or related conditions in intensive care - a rapid scoping review. Cochrane Database Syst Rev. 2020 Dec 21;12(12):CD013819. DOI: https://doi.org/10.1002/14651858.CD013819
Li J. Rehabilitation management of patients with COVID-19: lessons learned from the first experience in China. Eur J Phys Rehabil Med. 2020 Jun;56(3):335-338. DOI: https://doi.org/10.23736/S1973-9087.20.06292-9
Pancera S, Galeri S, Porta R, Pietta I, Bianchi LNC, Carrozza MC, Villafañe JH. Feasibility and Efficacy of the Pulmonary Rehabilitation Program in a Rehabilitation Center: CASE REPORT OF A YOUNG PATIENT DEVELOPING SEVERE COVID-19 ACUTE RESPIRATORY DISTRESS SYNDROME. J Cardiopulm Rehabil Prev. 2020 Jul;40(4):205-208. DOI: https://doi.org/10.1097/HCR.0000000000000529
Medrinal C, Prieur G, Bonnevie T, Gravier FE, Mayard D, Desmalles E, Smondack P, Lamia B, Combret Y, Fossat G. Muscle weakness, functional capacities and recovery for COVID-19 ICU survivors. BMC Anesthesiol. 2021 Mar 2;21(1):64. DOI: https://doi.org/10.1186/s12871-021-01274-0
Needham E, Newcombe V, Michell A, Thornton R, Grainger A, Anwar F, Warburton E, Menon D, Trivedi M, Sawcer S. Mononeuritis multiplex: an unexpectedly frequent feature of severe COVID-19. J Neurol. 2021 Aug;268(8):2685-2689. DOI: https://doi.org/10.1007/s00415-020-10321-8
Lobanov AA, Irina A Grishechkina, Andronov SV, Gleb N Barashkov, Andrey I Popov, Anatoliy D Fesyun, Elena P Ivanova, Maccarone MC, Stefano Masiero. Can aquatic exercises contribute to the improvement of the gait stereotype function in patients with Long COVID outcomes? Eur J Transl Myol. 2022 Jul 14. DOI: https://doi.org/10.4081/ejtm.2022.10698
López-Viñas L, Vega-Villar J, Rocío-Martín E, García-García P, De La Rosa Santiago E, Galván-Román JM, Wix-Ramos R. Diaphragm impairment in patients admitted for severe COVID-19. Eur J Transl Myol. 2022 Jun 21;32(2):10460. DOI: https://doi.org/10.4081/ejtm.2022.10460
Kouhpayeh H. Clinical features predicting COVID-19 mortality risk. Eur J Transl Myol. 2022 Apr 12;32(2):10268. DOI: https://doi.org/10.4081/ejtm.2022.10268
Finsterer J, Scorza FA, Scorza CA, Fiorini AC. Consider differentials before diagnosing COVID-19 associated polyradiculitis. Eur J Transl Myol. 2022 Jan 5;32(1). DOI: https://doi.org/10.4081/ejtm.2022.10111
Amato A, Messina G, Feka K, Genua D, Ragonese P, Kostrzewa-Nowak D, Fischetti F, Iovane A, Proia P. Taopatch® combined with home-based training protocol to prevent sedentary lifestyle and biochemical changes in MS patients during COVID-19 pandemic. Eur J Transl Myol. 2021 Aug 31;31(3):9877. DOI: https://doi.org/10.4081/ejtm.2021.9877
Gilmutdinova IR, Kolyshenkov VA, Lapickaya KA, Trepova AS, Vasileva VA, Prosvirnin AN, Marchenkova LA, Terentev KV, Yakovlev MY, Rachin AP, Fesyun AD, Reverchuk IV. Telemedicine platform COVIDREHAB for remote rehabilitation of patients after COVID-19. Eur J Transl Myol. 2021 May 13;31(2):9783. DOI: https://doi.org/10.4081/ejtm.2021.9783
Doro M, Ferreira Marques Y, Cantarinho de Lima HF, De Oliveira Caccalano W, De Oliveira Nessi AA, Chagas Caperuto É, De Oliveira Alonso D, Leite Portella D. Physical activity and medication in Brazilians suffering with non-communicable diseases in quarantine by COVID-19. Eur J Transl Myol. 2021 Apr 29;31(2):9772. DOI: https://doi.org/10.4081/ejtm.2021.9772
Carraro U, Albertin G, Martini A, Giuriati W, Guidolin D, Masiero S, Kern H, Hofer C, Marcante A, Ravara B. To contrast and reverse skeletal muscle weakness by Full-Body In-Bed Gym in chronic COVID-19 pandemic syndrome. Eur J Transl Myol. 2021 Mar 26;31(1):9641. DOI: https://doi.org/10.4081/ejtm.2021.9641
Moro T, Paoli A. When COVID-19 affects muscle: effects of quarantine in older adults. Eur J Transl Myol. 2020 Jun 17;30(2):9069. DOI: https://doi.org/10.4081/ejtm.2020.9069
Angelini C, Siciliano G. Neuromuscular diseases and Covid-19: Advices from scientific societies and early observations in Italy. Eur J Transl Myol. 2020 Jun 22;30(2):9032. DOI: https://doi.org/10.4081/ejtm.2020.9032
Andrea Gonzalez, Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences. Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 

 

 

Felipe Simon, Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile; (6) Laboratory of Integrative Physiopathology, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago

 

  

How to Cite

Gonzalez, A., Abrigo, J. ., Achiardi, O., Simon, F. ., & Cabello-Verrugio, C. (2022). Intensive care unit-acquired weakness: A review from molecular mechanisms to its impact in COVID-2019. European Journal of Translational Myology, 32(3). https://doi.org/10.4081/ejtm.2022.10511