Spatial-temporal study of cluster 5 picocyanobacteria and exopolymeric microgels in Lake Maggiore


Submitted: 29 November 2022
Accepted: 15 December 2022
Published: 27 December 2022
Abstract Views: 701
PDF: 177
DOC: 0
HTML: 13
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

In the oligotrophic Lake Maggiore, the majority of picocyanobacteria are phycoerythrin-bearing Synechococcus-type belonging to cluster 5 (Pcy-5). Their distribution was followed in a seven-year study along a depth gradient from the surface down to 350 m in relation to Transparent Exopolymer Particles (TEP), Total Organic Carbon (TOC), Chlorophyll-a (Chl-a) and water temperature. Pcy-5 abundances exhibit pronounced inter-annual variability, showing years of high numerical abundances as well as years with low numbers. In the upper 20 m, Pcy-5 peaks at around 10-15 m and then progressively decreases. Here, the Pcy-5 presence has been outlined for the first time in the deep layers of a deep lake, thus opening an interesting discussion on these organisms’ survival mechanisms in the absence of the light needed to perform photosynthesis. The relation of Pcy-5 with extracellular microgels was significant in autumn, when peaks of both variables were observed. In the other seasons, TEP was correlated with temperature and Chl-a, indicating the autochthonous origin of this fraction.


Alldredge AL, Passow U, Logan BE, 1993. The abundance and significance of a class of large, transparent organic particles in the ocean. Deep Sea Res. Part I Oceanogr. Res. Pap. 40:1131–40. DOI: https://doi.org/10.1016/0967-0637(93)90129-Q

Armstrong A, 2010. Lake carbon. Nature Geosci. 3:151. DOI: https://doi.org/10.1038/ngeo816

Bell T, Kalff L, 2001. The contribution of picophytoplankton in marine and freshwater systems of different trophic status and depth. Limnol. Oceanogr. 46:1243-8. DOI: https://doi.org/10.4319/lo.2001.46.5.1243

Berman-Frank I, Rosenberg G, Levitan O, Haramaty L, Mari X, 2007. Coupling between autocatalytic cell death and transparent exopolymeric particle production in the marine cyanobacterium Trichodesmium. Environ. Microbiol. 9:1415–22. DOI: https://doi.org/10.1111/j.1462-2920.2007.01257.x

Berman-Frank I, Spungin D, Rahav E, Wambeke FV, Turk-Kubo K, Moutin T, 2016. Dynamics of transparent exopolymer particles (TEP) during the VAHINE mesocosm experiment in the New Caledonian lagoon. Biogeosciences. 13:3793-805. DOI: https://doi.org/10.5194/bg-13-3793-2016

Bertoni R, Bertoni M, Morabito G, Rogora M, Callieri C, 2016. A non-deterministic approach to forecasting the trophic evolution of lakes. J. Limnol. 75:42-252. DOI: https://doi.org/10.4081/jlimnol.2016.1374

Bertoni R, Callieri C, Corno G, Rasconi S, Caravati E, Contesini M, 2010. Long-term trends of epilimnetic and hypolimnetic bacteria and organic carbon in a deep holo-oligomictic lake. Hydrobiologia. 644:279–87. DOI: https://doi.org/10.1007/s10750-010-0150-x

Burd AB, Jackson GA, 2009. Particle aggregation. Annu. Rev. Mar. Sci. 1:65–90. DOI: https://doi.org/10.1146/annurev.marine.010908.163904

Cabello-Yeves PJ, Picazo A, Camacho A, Callieri C, Rosselli R, Roda-Garcia JJ, et al., 2018. Ecological and genomic features of two widespread freshwater picocyanobacteria. Environ. Microbiol. 20:3757–71. DOI: https://doi.org/10.1111/1462-2920.14377

Callieri C, 2008. Picophytoplankton in freshwater ecosystems: the importance of small sized phototrophs. Freshwater Rev. 1:1-28. DOI: https://doi.org/10.1608/FRJ-1.1.1

Callieri C, Amalfitano S, Corno G, Bertoni R, 2016. Grazing-induced Synechococcus microcolony formation: experimental insights from two freshwater phylotypes. FEMS Microbiol. Ecol. 92:fiw154. DOI: https://doi.org/10.1093/femsec/fiw154

Callieri C, Coci M, Corno G, Macek M, Modenutti B, Balseiro E, Bertoni R, 2013. Phylogenetic diversity of nonmarine picocyanobacteria. FEMS Microbiol. Ecol. 85:293-301. DOI: https://doi.org/10.1111/1574-6941.12118

Callieri C, Corno G, Contesini M, Fontaneto D, Bertoni R, 2017. Transparent exopolymer particles (TEP) are driven by chlorophyll a and mainly confined to the euphotic zone in a deep subalpine lake. Inland Waters. 7:118-27. DOI: https://doi.org/10.1080/20442041.2017.1294384

Callieri C, Cronberg G, Stockner J, 2012. Freshwater Picocyanobacteria: Single Cells, Microcolonies and Colonial Forms. In: Whitton B (ed). Ecology of Cyanobacteria II: Their Diversity in Time and Space. Second edition. p. 229-269. Springer Netherlands, Heidelberg, Germany. DOI: https://doi.org/10.1007/978-94-007-3855-3_8

Callieri C, Hernandez-Aviles JS, Eckert EM, Rogora M, Tartari G, Sforzi T, et al., 2021. Transparent exopolymeric particles (TEP), phytoplankton and picocyanobacteria along a littoral-to-pelagic depth-gradient in a large subalpine lake. J. Limnol. 80:2021. DOI: https://doi.org/10.4081/jlimnol.2021.2021

Callieri C, Modenutti B, Queimaliños C, Bertoni R, Balseiro E, 2007. Production and biomass of picophytoplankton and larger autotrophs in Andean ultraoligotrophic lakes: differences in light harvesting efficiency in deep layers. Aquat. Ecol. 80:345-62. DOI: https://doi.org/10.1007/s10452-007-9125-z

Callieri C, Pinolini ML, 1995. Picoplankton in Lake Maggiore, Italy. Int.Rev.Ges. Hydrobiol. 80:491-550. DOI: https://doi.org/10.1002/iroh.19950800313

Callieri C, Sabatino R, Di Cesar A, Bertoni R, Crippa E, Eckert EM, 2022. Carbonio organico totale (TOC), sua componente mucillaginosa (TEP) clorofilla e picocianobatteri. In: CNR IRSA. Sede di Verbania. Ricerche sull’evoluzione del Lago Maggiore. Aspetti limnologici. Programma triennale 2019-2021. Campagna 2021 e Rapporto triennale 2019-2021. Commissione Internazionale per la protezione delle acque italo-svizzere (Ed.):170-180.

Callieri C, Sathicq MB, Cabello-Yeves PJ, Eckert EM, Hernández-Avilés JS, 2019a. TEP production under oxidative stress of the picocyanobacterium Synechococcus. J. Limnol. 78:271-83. DOI: https://doi.org/10.4081/jlimnol.2019.1907

Callieri C, Slabakova V, Dzhembekova N, Slabakova N, Peneva E, Cabello-Yeves PJ, et al., 2019b. The mesopelagic anoxic Black Sea as an unexpected habitat for Synechococcus challenges our understanding of global “deep red fluorescence”. ISME J. 13:1676-87. DOI: https://doi.org/10.1038/s41396-019-0378-z

Castenholz RW, Wilmotte A, Herdman M, Rippka R, Waterbury JB, Iteman I, Hoffmann L, 2001. Phylum BX. Cyanobacteria. In: Bergey’s Manual Syst. Bacteriol. Springer, New York, USA. p. 473–599. DOI: https://doi.org/10.1007/978-0-387-21609-6_27

Coe A, Biller SJ, Thomas E, Boulias K, Bliem C, Arellano A, et al., 2021 Coping with darkness: the adaptive response of marine picocyanobacteria to repeated light energy deprivation. Limnol. Oceanogr. 66:3300-12. DOI: https://doi.org/10.1002/lno.11880

Deng W, Cruz BN, Neuer S, 2016. Effects of nutrient limitation on cell growth, TEP production and aggregate formation of marine Synechococcus. Aquat. Microb. Ecol. 78:39-49. DOI: https://doi.org/10.3354/ame01803

Deng W, Monks L, Neuer S, 2015. Effects of clay minerals on the aggregation and subsequent settling of marine Synechococcus. Limnol. Oceanogr. 60:805−16. DOI: https://doi.org/10.1002/lno.10059

Di Cesare A, Dzhembekov N, Cabello-Yeves PJ, Eckert EM, Slabakova V, Slabakova N, et al., 2020. Genomic comparison and spatial distribution of different Synechococcus phylotypes in the Black Sea. Front. Microbiol. 11:1979. DOI: https://doi.org/10.3389/fmicb.2020.01979

Doré H, Farrant GK, Guyet U, Haguait J, Humily F, Ratin M, et al., 2020. Evolutionary mechanisms of long-term genome diversification associated with niche partitioning in marine picocyanobacteria. Front. Microbiol. 11:2129. DOI: https://doi.org/10.3389/fmicb.2020.567431

Dresti C, 2022. Evoluzione del regime di mescolamento e della dinamica dei nutrienti attraverso l’utilizzo di un modello numerico accoppiato ecologico-idrodinamico del lago Maggiore. In: CNR IRSA. Sede di Verbania. Ricerche sull’evoluzione del Lago Maggiore. Aspetti limnologici. Programma triennale 2019-2021. Campagna 2021 e Rapporto triennale 2019-2021. Commissione Internazionale per la protezione delle acque italo-svizzere (Ed.):114-12.

Engel A, 2004. Distribution of transparent exopolymer particles (TEP) in the northeast Atlantic Ocean and their potential significance for aggregation processes. Deep Sea Res. Part I: Oceanogr. Res. Pap. 51:83-92. DOI: https://doi.org/10.1016/j.dsr.2003.09.001

Ernst AC. Postius C, Böger P, 1996. Glycosylated surface proteins reflect genetic diversity among Synechococcus species of Lake Constance. Arch. Hydrobiol. Spec. Issues Advanc. Limnol. 48:1-6.

Flombaum P, Gallegos J, Gordillo R, Rincón J, Zabala L, Jiao N, et al., 2013. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl. Acad. Sci. U.S.A. 110:9824-9. DOI: https://doi.org/10.1073/pnas.1307701110

Grossart HP, Kiørboe T, Tang KW, Allgaier M, Yam EM, Ploug H, 2006. Interactions between marine snow and heterotrophic bacteria: aggregate formation and microbial dynamics. Aquat. Microb. Ecol. 42:19-26. DOI: https://doi.org/10.3354/ame042019

Hoiczyk E, Hansel A, 2000. Cyanobacterial cell walls: news from an unusual prokaryotic envelope. J. Bacteriol. 182:1191-9. DOI: https://doi.org/10.1128/JB.182.5.1191-1199.2000

Meng S, Rzechowicz M, Winters H, Fane AG, Liu Y, 2013. Transparent exopolymeric particles (TEP) and their potential effect on membrane biofouling Appl. Microbiol. Biotechnol. 97:5705-10. DOI: https://doi.org/10.1007/s00253-013-4979-6

Miller D, Pfreundt U, Hou S, Lott SC, Hess WR, Berman-Frank I, 2017. Winter mixing impacts gene expression in marine microbial populations in the Gulf of Aqaba. Aquat. Microb. Ecol. 80:223-42. DOI: https://doi.org/10.3354/ame01854

Passow U, 2002a. Production of transparent exopolymer particles (TEP) by phyto- and bacterioplankton. Mar. Ecol. Prog. Ser. 236:1-12. DOI: https://doi.org/10.3354/meps236001

Passow U, 2002b. Transparent exopolymer particles (TEP) in aquatic environments. Prog. Oceanogr. 55:287-333. DOI: https://doi.org/10.1016/S0079-6611(02)00138-6

Passow U, Alldredge AL, 1995. A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP). Limnol. Oceanogr. 40:1326-35. DOI: https://doi.org/10.4319/lo.1995.40.7.1326

Passow U, Shipe RF, Murray A, PaK DK, Brzezinski MA, Alldredge AL, 2001. Origin of transparent exopolymer particles (TEP) and their role in the sedimentation of particulate matter. Continental Shelf Res. 21:3-346. DOI: https://doi.org/10.1016/S0278-4343(00)00101-1

R Core Team, 2019. R: a language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing. Available at: http://www.R-project.org/.

Rogora M, Austoni M, Caroni R, Giacomotti P, Kamburska L, Marchetto A, et al., 2021. Temporal changes in nutrients in a deep oligomictic lake: the role of external loads versus climate change. J. Limnol. 80:2051. DOI: https://doi.org/10.4081/jlimnol.2021.2051

Rogora M, Buzzi F, Dresti C, Leoni B, Lepori F, Mosello R, et al, 2018. Climatic effects on vertical mixing and deep-water oxygen content in the subalpine lakes in Italy. Hydrobiologia 824:33-50. DOI: https://doi.org/10.1007/s10750-018-3623-y

Salmaso N, Buzzi F, Capelli C, Cerasino L, Leoni B, Lepori F, Rogora M, 2020. Responses to local and global stressors in the large southern perialpine lakes: Present status and challenges for research and management. J. Great Lakes Res. 46:752-66. DOI: https://doi.org/10.1016/j.jglr.2020.01.017

Salmaso N, Mosello R, 2010. Limnological research in the deep southern subalpine lakes: synthesis, directions and perspectives. Adv. Oceanogr. Limnol. 1:29-66. DOI: https://doi.org/10.1080/19475721003735773

Schreiber U, Schliwa U, Bilger W, 1986. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth. Res. 10:51-62. DOI: https://doi.org/10.1007/BF00024185

Šmarda J, Šmajs D, Komrska J, Krzyzanek V, 2002. S-layers on cell walls of cyanobacteria. Micron 33:257-77. DOI: https://doi.org/10.1016/S0968-4328(01)00031-2

Sohrin R, Isaji M, Obara Y, Agostini S, Suzuki Y, Hiroe Y, et al., 2011. Distribution of Synechococcus in the dark ocean. Aquat. Microb. Ecol. 64:1-14. DOI: https://doi.org/10.3354/ame01508

Thornton DC, Chen J, 2017. Exopolymer production as a function of cell permeability and death in a diatom (Thalassiosira weissflogii) and a cyanobacterium (Synechococcus elongatus). J. Phycol. 53:245-60. DOI: https://doi.org/10.1111/jpy.12470

Zwirglmaier K, Jardillier L, Ostrowski M, Mazard S, Garczarek L, Vaulot D, et al., 2008. Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ. Microbiol. 10:147-61. DOI: https://doi.org/10.1111/j.1462-2920.2007.01440.x

Callieri, C., Sabatino, R., Di Cesare, A., & Bertoni, R. (2022). Spatial-temporal study of cluster 5 picocyanobacteria and exopolymeric microgels in Lake Maggiore. Advances in Oceanography and Limnology, 13(2). https://doi.org/10.4081/aiol.2022.11043

Downloads

Download data is not yet available.

Citations