Anti-inflammatory, antibacterial and antioxidant activities of the medicinal species Atractylis cancellata

Submitted: December 16, 2022
Accepted: April 14, 2023
Published: April 28, 2023
Abstract Views: 1080
PDF: 277
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

This research is focused on the estimation of total bioactive contents and the evaluation of in vitro pharmacological activities of crude extracts (petroleum ether, ethyl acetate and n-butanol) obtained from the species Atractylis cancellata. The antioxidant activity was assessed by three different techniques. The antibacterial activity was determined using the agar disk diffusion assay against five bacterial strains. Furthermore, the anti-inflammatory activity was evaluated by the ovalbumin method. According to the results, A. cancellata extracts are rich in several classes of secondary metabolites, especially steroids, triterpenoids, flavonoids, and alkaloids. In addition, the tested extracts showed very interesting antioxidant activities in DPPH (2,2-Diphenyl-1-picrylhydrazyl) and FRAP assays and important correlation coefficients between the results of antioxidant activities and total phenolic and flavonoid contents were found. Moreover, all the tested extracts displayed an antibacterial effect at least against three bacterial strains. The petroleum ether extract inhibited the growth of all the tested bacteria in a dose-dependent manner except Escherichia coli ATCC 25922 and it revealed a strong anti-inflammatory activity (81.77±0.05%). We conclude that A. cancellata could be an important source of natural pharmacological candidates against oxidative stress, inflammatory and microbial diseases.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Parsonnet J. Bacterial infection as a cause of cancer. Environ Health Perspect 1995:103:263-268. DOI: https://doi.org/10.1289/ehp.95103s8263
Knapp S. Diabetes and infection: Is there a link? A mini-review. Gerontology 2013:59:99-104. DOI: https://doi.org/10.1159/000345107
Laws M, Shaaban A, Rahman KM. Antibiotic resistance breakers: current approaches and future directions. FEMS Microbiol Rev 2019:43:490-516. DOI: https://doi.org/10.1093/femsre/fuz014
Ivanov AV, Bartosch B, Isaguliants MG. Oxidative stress in infection and consequent disease. Oxidative Med Cell Long 2017;17:3496043. DOI: https://doi.org/10.1155/2017/3496043
International Compositae Alliance. Global Compositae Checklist (GCC). Checklist dataset. https://doi.org/10.15468/g7yhgt
Ozenda P. Flore et végétation du Sahara [Flora and vegetation of the Sahara desert]. Centre National de la Recherche Scientifique, Paris. 3rd ed. 1991. DOI: https://doi.org/10.1016/S0016-6995(06)80408-0
Mouffouk C, Mouffouk S, Dekkiche S, et al. Antioxidant and antibacterial activities of the species Silene inflata Sm. PSM Biol Res 2019a:4:74-86.
Mouffouk S, Gómez-Ruiz S, Benkhaled M, et al. Phytochemical composition, antioxidant and antibacterial activities of crude extracts from the species Euphorbia atlantica Coss. Pharm Chem J 2019:53:831-7. DOI: https://doi.org/10.1007/s11094-019-02086-w
Mouffouk C, Hambaba L, Haba H, et al. Evaluation of cytotoxic effect, anti-cholinesterase, hemolytic and antibacterial activities of the species Scabiosa stellata L. Curr Bioac Compd 2020:16:72-9. DOI: https://doi.org/10.2174/1573407214666180730102338
Yesmin S, Paul A, Naz T, et al. Membrane stabilization as a mechanism of the anti-inflammatory activity of ethanolic root extract of Choi (Piper chaba). Clin Phytoscience 2020:6:1-0. DOI: https://doi.org/10.1186/s40816-020-00207-7
Badaoui MI, Alabdul Magid A, Benkhaled M, et al. Pyrroloquinolone A, a new alkaloid and other phytochemicals from Atractylis cancellata L. with antioxidant and anticholinesterase activities. Nat Prod Res 2021;17:2997-3003. DOI: https://doi.org/10.1080/14786419.2019.1682575
Calmes M, Crespin F, Maillard C, et al. High-performance liquid chromatographic determination of atractyloside and carboxyatractyloside from Atractylis gummifera L. J Chromatogr A 1994:663:119-22. DOI: https://doi.org/10.1016/0021-9673(94)80503-2
Sadek EG, Metwally MA, Mpango GB. Triterpenes from Atractylis carduus L. Boll Chem Farm 1998:137:249-50.
Chabani S, Haba H, Lavaud C, et al. Flavonoid glycosides and triterpenoids from Atractylis flava. Phytochem Lett 2013:6:9-13. DOI: https://doi.org/10.1016/j.phytol.2012.10.004
Chabani S, Haba H, Long C, et al. Chemical composition of medicinal plant Atractylis serratuloides. Ind Crops Prod 2016:88:91-5. DOI: https://doi.org/10.1016/j.indcrop.2016.02.048
Chabani S, Lavaud C, Benkhaled M et al. Three new oleanane-type triterpene saponins from Atractylis flava. Phytochem Lett 2016:15:88-93. DOI: https://doi.org/10.1016/j.phytol.2015.11.017
Aryal S, Baniya MK, Danekhu K, et al. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants 2019:8:96. DOI: https://doi.org/10.3390/plants8040096
Boudebaz K, Nia S, Ayadi MT, et al. The effect of extraction method on antioxidant activity of Atractylis babelii Hochr. leaves and flowers extracts. Alg J Nat Prod 2015:3:146-52.
Khadhri A, El Mokni R, Smiti S. Composés phénoliques et activités antioxydantes de deux extraits de chardon à glu: Atractylis gummifera [Phenolic compounds and antioxidant activities of two milk thistle extracts: Atractylis gummifera]. Revue Soc Sci Nat de Tunisie 2013:39:44-52.
Melakhessou MA, Benkiki N, Marref SE. Determination of antioxidant capacity, flavonoids and total phenolic content of extracts from Atractylis flava Desf. Res J Pharm Technol 2018:11:5221-8. DOI: https://doi.org/10.5958/0974-360X.2018.00952.6
González-Chavira MM, Herrera-Hernández MG, Guzmán-Maldonado H, et al. Controlled water deficit as abiotic stress factor for enhancing the phytochemical content and adding-value of crops. Sci Hortic 2018:234:354-60. DOI: https://doi.org/10.1016/j.scienta.2018.02.049
Mouffouk C, Hambaba L, Haba H, et al. Acute toxicity and in vivo anti-inflammatory effects and in vitro antioxidant and anti-arthritic potential of Scabiosa stellata. Orient Pharm Exp Med 2018:18:335-48. DOI: https://doi.org/10.1007/s13596-018-0320-3
Vuolo MM, Lima VS, Junior MR. Phenolic compounds: Structure, classification, and antioxidant power in bioactive compounds. Amsterdam: Elsevier. 2019. DOI: https://doi.org/10.1016/B978-0-12-814774-0.00002-5
Driscoll JA, Brody SL, Kollef MH. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs 2007:67:351-68. DOI: https://doi.org/10.2165/00003495-200767030-00003
Marecos CV, Ferreira M, Ferreira MM et al. Sepsis, meningitis and cerebral abscesses caused by Citrobacter koseri. Case Rep 2012:1020114941. DOI: https://doi.org/10.1136/bcr.10.2011.4941
Bassetti M, Vena A, Croxatto A, et al. How to manage Pseudomonas aeruginosa infections. Drugs Cont 2018;7:212527. DOI: https://doi.org/10.7573/dic.212527
Cheung GY, Bae JS, Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021:12:547-69. DOI: https://doi.org/10.1080/21505594.2021.1878688
Wasfi R, Hamed SM, Amer MA, et al. Proteus mirabilis biofilm: development and therapeutic strategies. Front Cell Infect Microbiol 2020:10:414. DOI: https://doi.org/10.3389/fcimb.2020.00414
Desbois A. Potential applications of antimicrobial fatty acids in medicine, agriculture and other industries. Recent Pat Antiinfect Drug Discov 2012:7:111-22. DOI: https://doi.org/10.2174/157489112801619728
Singh B, A Sharma R. Anti-inflammatory and antimicrobial effects of flavonoids from Heliotropium ellipticum exudate. Curr Bioact Compd 2016:12:123-31. DOI: https://doi.org/10.2174/157340721202160504223537
Doğan A, Otlu S, Çelebi Ö, et al. An investigation of antibacterial effects of steroids. Turkish J Vet Anim Sci 2017:41:302-5. DOI: https://doi.org/10.3906/vet-1510-24
Nzogong RT, Ndjateu FS, Ekom SE, et al. Antimicrobial and antioxidant activities of triterpenoid and phenolic derivatives from two Cameroonian Melastomataceae plants: Dissotis senegambiensis and Amphiblemma monticola. BMC complement Altern Med 2018:18:159. DOI: https://doi.org/10.1186/s12906-018-2229-2
Rahman SM, Abd-Ellatif SA, Deraz SF, et al. Antibacterial activity of some wild medicinal plants collected from western Mediterranean coast, Egypt: Natural alternatives for infectious disease treatment. African J Biotechnol 2011:10:10733-43. DOI: https://doi.org/10.5897/AJB11.007
Sifour M, Ouled-Hadddar H, Ouitas L, et al. Burn healing activity of aqueous extract of Atractylis gummifera (L). Séminaire international: Cancer, stress cellulaire et substances bioactives 2012 Sep:23-4.
Sifouane S. Etude phytochimique de deux plantes Atractylis humilis et Carduncellus pinnatus (Asteraceae) [Phytochemical study of two plants Atractylis humilis and Carduncellus pinnatus (Asteraceae)] 2021. Doctoral dissertation, Batna 1 University UB1.
Naz S, Imran M, Rauf A, et al. Chrysin: Pharmacological and therapeutic properties. Life Sci 2019:235:116797. DOI: https://doi.org/10.1016/j.lfs.2019.116797
Park CH, Min SY, Yu HW et al. Effects of apigenin on RBL-2H3, RAW264.7, and HaCaT cells: anti-allergic, anti-inflammatory, and skin-protective activities. Int J Mol Sci 2020:21:4620. DOI: https://doi.org/10.3390/ijms21134620
Septembre-Malaterre A, Boumendjel A, Seteyen AL, et al. Focus on the high therapeutic potentials of quercetin and its derivatives. Phytomedicine Plus 2022:15:100220. DOI: https://doi.org/10.1016/j.phyplu.2022.100220
Shalkami AS, Hassan MI, Bakr AG. Anti-inflammatory, antioxidant and anti-apoptotic activity of diosmin in acetic acid-induced ulcerative colitis. Hum Exp Toxicol 2018:37:78-86. DOI: https://doi.org/10.1177/0960327117694075
Berkoz M. Diosmin suppresses the pro-inflammatory mediators in lipopolysaccharide-induced RAW264.7 macrophages via NF-κB and MAPKs signal pathways. Gen Physiol Biophys 2019: 38:315-24. DOI: https://doi.org/10.4149/gpb_2019010
Liu K, Zhang X, Xie L, et al. Lupeol and its derivatives as anticancer and anti-inflammatory agents: Molecular mechanisms and therapeutic efficacy. Pharmacol Res:164:105373. DOI: https://doi.org/10.1016/j.phrs.2020.105373
Choi JN, Choi YH, Lee JM, et al. Anti-inflammatory effects of β-sitosterol-β-D-glucoside from Trachelospermum jasminoides (Apocynaceae) in lipopolysaccharide-stimulated RAW 264.7 murine macrophages. Nat Pod Res 2012:26:2340-3. DOI: https://doi.org/10.1080/14786419.2012.654608

How to Cite

Mouffouk, S., Mouffouk, C., Mouffouk, S., Mekki, A. H., Moumen Messaoud, A., & Haba, H. (2023). Anti-inflammatory, antibacterial and antioxidant activities of the medicinal species <i>Atractylis cancellata</i>. Journal of Biological Research - Bollettino Della Società Italiana Di Biologia Sperimentale, 96(1). https://doi.org/10.4081/jbr.2023.11096