First report of microalgae Rhexinema paucicellulare (Ulvophyceae) in Mauritius and its biochemical evaluation as a source of fatty acids


Submitted: July 3, 2021
Accepted: January 13, 2022
Published: January 18, 2022
Abstract Views: 1368
PDF: 276
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

  • Ritesh Bhagea Agricultural and Food Science Department, Faculty of Agriculture, University of Mauritius, Réduit, Mauritius.
  • Vishwakalyan Bhoyroo Agricultural and Food Science Department, Faculty of Agriculture, University of Mauritius, Réduit, Mauritius.
  • Daneshwar Puchooa Agricultural and Food Science Department, Faculty of Agriculture, University of Mauritius, Réduit, Mauritius.

Mauritius is a tropical island with a very rich biodiversity of endemic organisms with an unexplored pool of microalgae, especially in the Ulvophyceae class. From freshwater sources, an isolate was characterised using morphological traits and 18S rDNA region. It was determined to be Rhexinema paucicellulare and was further evaluated for its biochemical content against commercially available Spirulina sp. This study evaluates the lipids content and offers a first report on the carbohydrate and protein contents of this species. The biochemical profile of Spirulina sp. differed significantly from R. paucicellulare with respect to carbohydrate (17.36% vs. 20.31%); protein (45.09% vs. 25.71%) and lipids (5.86% vs. 13.88%). Further exploration of the fatty acids profile through GC analysis revealed high presence of alpha-linolenic acid at 26.48% and linoleic acid at 6.31%. The presence of important omega-3 FA was evidenced through GC/MS analysis with eicosapentaenoic acid and docosahexaenoic acid, which could make this isolate a potential candidate in the field of aquaculture.


Brunchault RV, Soulange JG, Sanmukhiya VMR, Sevathian JC. Molecular and bioactive profiling of selected Eugenia species from Mauritius Island. Int J Plant Biol 2014;5:4728 DOI: https://doi.org/10.4081/pb.2014.4728

Sathasivam R, Radhakrishnan R, Hashem A, Abd-Allah EF. Microalgae metabolites: A rich source for food and medicine. Saudi J Biol Sci 2019;26:709–22. DOI: https://doi.org/10.1016/j.sjbs.2017.11.003

Ballah M, Bhoyroo V, Neetoo H. Assessment of the physico-chemical quality and extent of algal proliferation in water from an impounding reservoir prone to eutrophication. J Ecol Environ 2019;43:5. DOI: https://doi.org/10.1186/s41610-018-0094-z

Sadally SB, Taleb-Hossenkhan N, Bhagooli R. Microalgal distribution, diversity and photo-physiological performance across five tropical ecosystems around Mauritius Island. West Indian Ocean J Mar Sci 2016;15.

Darienko T, Pröschold T. Toward a monograph of non-marine Ulvophyceae using an integrative approach (Molecular phylogeny and systematics of terrestrial Ulvophyceae II.). Phytotaxa 2017;324:1. DOI: https://doi.org/10.11646/phytotaxa.324.1.1

Škaloud P, Rindi F, Boedeker C, Leliaert F. Freshwater Flora of Central Europe, Vol 13: Chlorophyta: Ulvophyceae (Süßwasserflora von Mitteleuropa, Bd. 13: Chlorophyta: Ulvophyceae). Berlin, Heidelberg: Springer Berlin Heidelberg; 2018. DOI: https://doi.org/10.1007/978-3-662-55495-1

Maneeruttanarungroj C, Incharoensakdi A. Rapid method for DNA isolation from a tough cell wall green alga Tetraspora sp. CU2551. World J Microbiol Biotechnol 2016;32:99. DOI: https://doi.org/10.1007/s11274-016-2055-y

Bérard A, Dorigo U, Humbert JF, Martin-Laurent F. Microalgae community structure analysis based on 18S rDNA amplification from DNA extracted directly from soil as a potential soil bioindicator. Agron Sustain Dev 2005;25:285–91. DOI: https://doi.org/10.1051/agro:2005004

Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 2019 19;20:1160–6. DOI: https://doi.org/10.1093/bib/bbx108

Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 2012;9:772. DOI: https://doi.org/10.1038/nmeth.2109

Guindon S, Dufayard J-F, Lefort V, et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010;59:307–21. DOI: https://doi.org/10.1093/sysbio/syq010

Ronquist F, Teslenko M, van der Mark P, et al. MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012;61:539–42. DOI: https://doi.org/10.1093/sysbio/sys029

Abomohra AE-F, Wagner M, El-Sheekh M, Hanelt D. Lipid and total fatty acid productivity in photoautotrophic fresh water microalgae: screening studies towards biodiesel production. J Appl Phycol 2013;25:931–6. DOI: https://doi.org/10.1007/s10811-012-9917-y

Griffiths MJ, van Hille RP, Harrison STL. Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions. J Appl Phycol 2012;24:989–1001. DOI: https://doi.org/10.1007/s10811-011-9723-y

Miranda JR, Passarinho PC, Gouveia L. Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresour Technol 2012;104:342–8. DOI: https://doi.org/10.1016/j.biortech.2011.10.059

Dubois M, Gilles KA, Hamilton JK, et al. Colorimetric method for determination of sugars and related substances. Anal Chem 1956;28:350–6. DOI: https://doi.org/10.1021/ac60111a017

Slocombe SP, Ross M, Thomas N, et al. A rapid and general method for measurement of protein in micro-algal biomass. Bioresour Technol 2013;129:51–7. DOI: https://doi.org/10.1016/j.biortech.2012.10.163

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951;193:265–75. DOI: https://doi.org/10.1016/S0021-9258(19)52451-6

Santhosh Kumar K, Prasanthkumar S, Ray JG. Experimental assessment of productivity, oil-yield and oil-profile of eight different common freshwater-blooming green algae of Kerala. Biocatal Agric Biotechnol 2016;8:270–7. DOI: https://doi.org/10.1016/j.bcab.2016.10.007

Lang I, Hodac L, Friedl T, Feussner I. Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biol 2011;11:124. DOI: https://doi.org/10.1186/1471-2229-11-124

Sluiman HJ. Cell division in Gloeotilopsis planctonica, a newly identified Ulvophycean alga (Chlorophyta) studied by freeze fixation and freeze substitution. J Phycol 1991;27:291–8. DOI: https://doi.org/10.1111/j.0022-3646.1991.00291.x

Friedl T. Evolution of the polyphyletic genus Pleurastrum (Chlorophyta): inferences from nuclear-encoded ribosomal DNA sequences and motile cell ultrastructure. Phycologia 1996;35:456–69. DOI: https://doi.org/10.2216/i0031-8884-35-5-456.1

Vieira Salla AC, Margarites AC, Seibel FI, et al. Increase in the carbohydrate content of the microalgae Spirulina in culture by nutrient starvation and the addition of residues of whey protein concentrate. Bioresour Technol 2016;209:133–41. DOI: https://doi.org/10.1016/j.biortech.2016.02.069

Efremenko EN, Nikolskaya AB, Lyagin IV, et al. Production of biofuels from pretreated microalgae biomass by anaerobic fermentation with immobilized Clostridium acetobutylicum cells. Bioresour Technol 2012;114:342–8. DOI: https://doi.org/10.1016/j.biortech.2012.03.049

Samiee-Zafarghandi R, Karimi-Sabet J, Abdoli MA, Karbassi A. Increasing microalgal carbohydrate content for hydrothermal gasification purposes. Renew Energy 2018;116:710–9. DOI: https://doi.org/10.1016/j.renene.2017.10.020

Andreotti V, Solimeno A, Chindris A, et al. Growth of Tetraselmis suecica and Dunaliella tertiolecta in aquaculture wastewater: numerical simulation with the BIO_ALGAE model. Water Air Soil Pollut 2019;230:60. DOI: https://doi.org/10.1007/s11270-019-4122-0

Matos ÂP, Feller R, Moecke EHS, et al. Chemical characterization of six microalgae with potential utility for food application. J Am Oil Chem Soc 2016;93:963–72. DOI: https://doi.org/10.1007/s11746-016-2849-y

Kalsum L, Dewi E, Margarety E, Ningsih AS. Lipid extraction from microalgae Spirulina platensis for raw materials of biodiesel. J Phys Conf Ser 2019;1167:012051. DOI: https://doi.org/10.1088/1742-6596/1167/1/012051

Demirbas A. Use of algae as biofuel sources. Energy Convers Manag 2010;51:2738–49. DOI: https://doi.org/10.1016/j.enconman.2010.06.010

Cuéllar-García DJ, Rangel-Basto YA, Urbina-Suarez NA, et al. Lipids production from Scenedesmus obliquus through carbon/nitrogen ratio optimization. J Phys Conf Ser 2019;1388:012043. DOI: https://doi.org/10.1088/1742-6596/1388/1/012043

Ma Y, Wang Z, Yu C, et al. Evaluation of the potential of 9 Nannochloropsis strains for biodiesel production. Bioresour Technol 2014;167:503–9. DOI: https://doi.org/10.1016/j.biortech.2014.06.047

Aratboni HA, Rafiei N, Garcia-Granados R, et al. Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microb Cell Factories 2019;18:178. DOI: https://doi.org/10.1186/s12934-019-1228-4

Liu J, Yuan C, Hu G, Li F. Effects of light intensity on the growth and lipid accumulation of microalga Scenedesmus sp. 11-1 under nitrogen limitation. Appl Biochem Biotechnol 2012;166:2127–37. DOI: https://doi.org/10.1007/s12010-012-9639-2

Mühling M, Belay A, Whitton BA. Variation in fatty acid composition of Arthrospira (Spirulina) strains. J Appl Phycol 2005;17:137–46. DOI: https://doi.org/10.1007/s10811-005-7213-9

Bhagea, R., Bhoyroo, V., & Puchooa, D. (2022). First report of microalgae <em>Rhexinema paucicellulare</em> (Ulvophyceae) in Mauritius and its biochemical evaluation as a source of fatty acids. Journal of Biological Research - Bollettino Della Società Italiana Di Biologia Sperimentale, 95(1). https://doi.org/10.4081/jbr.2022.9950

Downloads

Download data is not yet available.

Citations