Potential of neem oil extract® against Palmetto weevil larvae, Rhynchophorus cruentatus Fabricius (Coleoptera: Curculionidae) and its impact on some detoxification enzymes

Submitted: 20 March 2022
Accepted: 27 September 2022
Published: 19 December 2022
Abstract Views: 2274
PDF: 685
HTML: 15
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Palmetto weevil, Rhynchophorus cruentatus (Fabricius) (Coleoptera: Curculionidae), is considered the giant weevil in North America (Weissling & Giblin-Davis, 1997). It is a severe pest of palm trees, especially cabbage palms (Sabal palmetto). Larval stages feed heavily on the internal palm soft tissues causing total palm loss (Hunsberger et al., 2000). We know that reports about controlling this pest are very scarce. This research project focuses, for the first time, on controlling Rhynchophorus cruentatus via plant-based insecticides. This study examined the potential of using neem oil extract®, a commercial product, against the third-instar larvae of palmetto weevil (R. cruentatus). Impacts of neem oil extract® on mortality, larval weight, the activity of detoxification enzymes, and thei gene expression levels were examined. Neem oil extract® manifested dose-dependent larvicidal activity against the third-instar larvae of R. cruentatus. Investigations revealed higher mortality and reduction in weight 24 hours post-treatment. LC50 and LC90 values were estimated 24 h post-treatment to be 12.04% and 26.48%, respectively. Biochemical analysis revealed increasing activities of three detoxification enzymes (Acetylcholinesterase, Glutathione S-transferase, and Superoxide dismutase) in the third-instar larvae after 8 h of treatment with LC50. A significant elevation in the expression levels of detoxification genes (Acetylcholinesterase, Glutathione S-transferase, Cytochrome P450, and Superoxide dismutase) was recorded in the treated larva. Our findings help to underline the detoxification mechanisms of R. cruentatus larva against neem oil extract® at both biochemical and molecular levels. Thus, neem oil extract® had a lethal potential against third-instar larvae of R. cruentatus and is suggested as a safe bioinsecticide that may be used in IPM of palm trees as an alternative to chemical insecticides.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

ABBAS M.A., ALSUDANI A.A., ALHUSANI A.H., FAWAZ S.F., 2022 - Study the effectiveness of marijuana and rosemary alchoholic extracts in control of red rusty flour beetle Tribolium castaneum (Herbst) (Coleoptera : Tenebrionidae). - J. Kerbala Agric. Sci. 9: 1-6.
ABBOTT W.S., 1925 - A method of computing the effectiveness of an insecticide. - J. Econ. Entomol. 18: 265–267. DOI: https://doi.org/10.1093/jee/18.2.265a
AHMED F., EL-SOBKI A., 2021 - Biochemical and Histological Responses of Red Palm Weevil, Rhynchophorus ferrugineus Exposed to Sub-lethal Levels of Different Insecticide Classes. - Egypt. Acad. J. Biol. Sci. F. Toxicol. Pest Control 13: 293–308. DOI: https://doi.org/10.21608/eajbsf.2021.211778
AHMED R., FREED S., NAEEM A., AKMAL M., 2021 - Activity of detoxification enzymes in Rhynchophorus ferrugineus (Olivier) (coleoptera: Curculionidae) after exposure to Beauveria bassiana (Balsamo). - Invertebr. Surviv. J. 18: 108–118.
AL-AYEDH H., HUSSAIN A., RIZWAN-UL-HAQ M., AL-JABR A.M., 2016 - Status of insecticide resistance in field-collected populations of Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae). - Int. J. Agric. Biol. 18: 103–110. DOI: https://doi.org/10.17957/IJAB/15.0070
AL-HARBI N.A., AL ATTAR N.M., HIKAL D.M., MOHAMED S.E., ABDEL LATEF A.A.H., IBRAHIM A.A., ABDEIN M.A., 2021 - Evaluation of Insecticidal Effects of Plants Essential Oils Extracted from Basil, Black Seeds and Lavender against Sitophilus oryzae. - Plants 10: 829. DOI: https://doi.org/10.3390/plants10050829
AL-SHURAYM L.A.M., AL-KERIDIS L.A., ALI AL-DAKHIL A., AL-QAHTANI W.S., 2020 - The impact of onion-garlic mixture to control of Rhynchophorus ferrugineus in Saudi Arabia. - J. Saudi Soc. Agric. Sci. 19: 521–527. DOI: https://doi.org/10.1016/j.jssas.2020.09.005
AL DAWSARI M.M., ALAM P., 2022 - Disruption impact of citronella and menthol insecticides on adults behavior and hemocytes morphology in the red palm weevil Rhynchophorus ferrugineus “Oliver” (Coleoptera: Curculionidae). - Sci. Prog. 105: 003685042210794. DOI: https://doi.org/10.1177/00368504221079437
ALJABR A.M., HUSSAIN A., RIZWAN-UL-HAQ M., AL-AYEDH H., 2017 - Toxicity of plant secondary metabolites modulating detoxification genes expression for natural red palm weevil pesticide development. - Molecules 22: 1–12. DOI: https://doi.org/10.3390/molecules22010169
BAMIDELE O., AJELE J., KOLAWOLE A., OLUWAFEMI A., 2013 - Changes in the tissue antioxidant enzyme activities of palm weevil ( Rynchophorous phoenicis ) larva by the action of 2 , 2-dichlorovinyl dimethyl phosphate. - African J. Biochem. Res. 7: 128–137.
BARNARD D.R., XUE R. DE, 2004 - Laboratory evaluation of mosquito repellents against Aedes albopictus, Culex nigripalpus, and Ochlerotatus triseriatus (Diptera: Culicidae). - J. Med. Entomol. 41: 726–730. DOI: https://doi.org/10.1603/0022-2585-41.4.726
BOLTER C.J., CHEFURKA W., 1990 - The effect of phosphine treatment on superoxide dismutase, catalase, and peroxidase in the granary weevil, Sitophilus granarius. - Pestic. Biochem. Physiol. 36: 52–60. DOI: https://doi.org/10.1016/0048-3575(90)90020-3
BRADFORD M.M., 1976 - A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. - Anal. Biochem. 72: 248–254. DOI: https://doi.org/10.1016/0003-2697(76)90527-3
BREAM A.S., GHONEIM K.S., TANAI M.A., NASSAR M.M., 2001 - Evaluation of the plant extracts, Azadirachtin and and Jojoba oil, on the red palm weevil Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae), in: Sec. Int. Conf. Date Palms, Fac. Agric. Al-Ain, UAEU. 25-27 March.
CHEN C., LI S., ZHU H., FAN B., WANG Y., HAO D., 2020 - Identification and evaluation of reference genes for gene expression analysis in the weevil pest Pagiophloeus tsushimanus using RT-qPCR. - J. Asia. Pac. Entomol. 23: 336–344. DOI: https://doi.org/10.1016/j.aspen.2020.01.010
CHEN Y., ZHANG B., YANG J., ZOU C., LI T., ZHANG G., CHEN G., 2021 - Detoxification, antioxidant, and digestive enzyme activities and gene expression analysis of Lymantria dispar larvae under carvacrol. - J. Asia. Pac. Entomol. 24: 208–216. DOI: https://doi.org/10.1016/j.aspen.2020.12.014
DARRAG H.M., ALHAJHOJ M.R., KHALIL H.E., 2021 - Bio-Insecticide of Thymus vulgaris and Ocimum basilicum Extract from Cell Suspensions and Their Inhibitory Effect against Serine, Cysteine, and Metalloproteinases of the Red Palm Weevil (Rhynchophorus ferrugineus). - Insects 12: 405. DOI: https://doi.org/10.3390/insects12050405
DIDAIR R.A., ALI M.A., BEKHIET H.K., EL-FESHAWAY A.A., 2018 - Biochemical effects of the entomopathogenic fungus, Beauveria Bassiana on the Red Palm Weevil, Rhynchophorus ferrugineus. - Egypt. J. Agric. Res. 96: 403–414. DOI: https://doi.org/10.21608/ejar.2018.133798
EL-BOKL M., BAKER R., EL-GAMMAL H., MAHMOUD M., 2010 - Biological and histopathological effects of some insecticidal agents against red palm weevil Rhynchophorus ferrugineus. - Egypt. Acad. J. Biol. Sci. D. Histol. Histochem. 1: 7–22. DOI: https://doi.org/10.21608/eajbsd.2010.14151
EL-SOBKI A.E.A.M., ALI A.A.I., 2020 - Biochemical Effects of Some Chitin Synrhesis Ihibitors Against Red Palm Weevil, Rhynchophorus ferrugineus Insect. - Egypt. Acad. J. Biol. Sci. 12: 127–139. DOI: https://doi.org/10.21608/eajbsf.2020.83542
FINNEY D.J., 1948 - Probit Analysis. - Biometrika 35: 423. DOI: https://doi.org/10.2307/2332364
GADBERRY M.D., MALCOMBER S.T., DOUST A.N., KELLOGG E.A., 2005 - Primaclade - A flexible tool to find conserved PCR primers across multiple species. - Bioinformatics 21: 1263–1264. DOI: https://doi.org/10.1093/bioinformatics/bti134
GHONEIM K.S., MOHAMED H.A., BREAM A.S., 2000 Efficacy of the neem seed extract, neemazal, on growth and development of the Egyptian cotton leafworm, Spodoptera littoralis Boisd (Lepidoptera: Nuctidae) [WWW Document]. - J. Egypt. Ger. Soc. Zoolgy.
GIBLIN-DAVIS R.M., GERBER K., GRIFFITH R., 1989 - Laboratory Rearing of Rhynchophorus cruentatus and R. palmarum (Coleoptera: Curculionidae). - Florida Entomol. https://doi.org/10.2307/3495186 DOI: https://doi.org/10.2307/3495186
GIBLIN-DAVIS R.M., HOWARD F.W., 1988 - Notes on the Palmetto Weevil , Rhynchophorus Cruentatus. - Florida state horiculture Soc.
GIBLIN-DAVIS R.M., HOWARD F.W., 1989 - Vulnerability of Stressed Palms to Attack by Rhynchophorus cruentatus (Coleoptera: Curculionidae) and Insecticidal Control of the Pest. - J. Econ. Entomol. 82: 1185–1190. DOI: https://doi.org/10.1093/jee/82.4.1185
HABIG W.H., PABST M.J., JAKOBY W.B., 1974 - Glutathione S transferases. The first enzymatic step in mercapturic acid formation. - J. Biol. Chem. 249: 7130–7139. DOI: https://doi.org/10.1016/S0021-9258(19)42083-8
HAJJAR M.J., AJLAN A.M., AL-AHMAD M.H., 2021 - Integration of Repellency Effect of Neem-Based Insecticide and Pheromone Bio-Trap®with Beauveria bassiana (Hypocreales: Cordycipitaceae) to Control the Red Palm Weevil, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae). - African Entomol. 29: 611–619. DOI: https://doi.org/10.4001/003.029.0611
HALDER J., KUSHWAHA D., RAI A.B., SINGH A., SINGH B., 2017 - Potential of entomopathogens and neem oil against two emerging insect pests of vegetables. - Indian J. Agric. Sci. 87: 220–224. DOI: https://doi.org/10.56093/ijas.v87i2.67634
HALLIRU M., SULEIMAN M., 2022 - Potentiality of some botanical extracts as biopesticides against the maize weevil, Sitophilus zeamais Motsch. (Coleoptera: Curculionidae). - J. Entomol. Zool. Stud. 10: 34–41. DOI: https://doi.org/10.22271/j.ento.2022.v10.i1a.8920
HAMADAH K.S., 2019 - Disturbance of phosphatase and transaminase activities in grubs of the red palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae) by certain insecticidal compounds. - J. Basic Appl. Zool. 80: 1–8. DOI: https://doi.org/10.1186/s41936-019-0123-1
HEMINGWAY J., KARUNARATNE S.H.P.P., 1998 - Mosquito carboxylesterases: A review of the molecular biology and biochemistry of a major insecticide resistance mechanism. - Med. Vet. Entomol. 12: 1–12. DOI: https://doi.org/10.1046/j.1365-2915.1998.00082.x
HUMMEL H.E., DETLEF H.F., LET S. V., 2011 - Twenty five years of azadirachtins (1986-2011). - Pestycydy/Pesticides 1: 49–56.
HUNSBERGER A.G.B., GIBLIN-DAVIS R.M., WEISSLING T.J., 2000 - Symptoms and population dynamics of Rhynchophorus cruentatus (Coleoptera: Curculionidae) in Canary Island date palms. - Florida Entomol. 83: 290–303. DOI: https://doi.org/10.2307/3496348
HUSSAIN A., RIZWAN-UL-HAQ M., AL-AYEDH H., ALJABR A.M., 2017 - Toxicity and Detoxification Mechanism of Black Pepper and Its Major Constituent in Controlling Rhynchophorus ferrugineus Olivier (Curculionidae: Coleoptera). - Neotrop. Entomol. 46: 685–693. DOI: https://doi.org/10.1007/s13744-017-0501-7
IBRAHIM S., ABD EL-KAREEM S., 2018 - Enzymatic Changes and Toxic Effect of Some Aromatic Plant Oils on The Cotton Leafworm, Spodoptera littoralis (Boisd.). - Egypt. Acad. J. Biol. Sci. F. Toxicol. Pest Control 10: 13–24. DOI: https://doi.org/10.21608/eajbsf.2018.17016
ISMAN M.B., 2006 - Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. - Annu. Rev. Entomol. 51: 45–66. DOI: https://doi.org/10.1146/annurev.ento.51.110104.151146
ISMAN M.B., 2000 - Plant essential oils as green pesticides for pest and disease management. - Crop Prot. 19: 603–608. DOI: https://doi.org/10.1016/S0261-2194(00)00079-X
KAMARAJ C., GANDHI P.R., ELANGO G., KARTHI S., CHUNG I.M., RAJAKUMAR G., 2018 - Novel and environmental friendly approach; Impact of Neem (Azadirachta indica) gum nano formulation (NGNF) on Helicoverpa armigera (Hub.) and Spodoptera litura (Fab.). - Int. J. Biol. Macromol. 107: 59–69. DOI: https://doi.org/10.1016/j.ijbiomac.2017.08.145
KHOSRAVI R., SENDI J.J., GHADAMYARI M., YEZDANI E., 2011 - Effect of sweet wormwood Artemisia annua crude leaf extracts on some biological and physiological characteristics of the lesser mulberry pyralid, Glyphodes pyloalis. - J. Insect Sci. 11: 1–13. DOI: https://doi.org/10.1673/031.011.15601
KUMAR V., DESHWAL B., THALLURI R., MEENA S., 2022 - Biopesticides as Promising Alternatives to Traditional Approaches. - Vigyan Varta 3: 73–76.
LI S., WANG J., CHEN C., LI H., HAO D., 2022 - Tolerance, biochemistry and related gene expression in Pagiophloeus tsushimanus (Coleoptera: Curculionidae) exposed to chemical stress from headspace host‐plant volatiles. - Agric. For. Entomol. 24: 189–203. DOI: https://doi.org/10.1111/afe.12482
LIVAK K.J., SCHMITTGEN T.D., 2001 - Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. - Methods 25: 402–408. DOI: https://doi.org/10.1006/meth.2001.1262
MADY H.., AHMED M.., EL NAMAKY A.., 2021 - Effciency of Origanum majorana essential oil as insecticidal against Rhynchophorus ferrugineus the red palm weevil (Olivier) (Coleoptera: Curculionidae). - J. Biopestic. 14: 32–40.
MANIVASAGAM K., MUTHUSWAMI M., SRINIVASAN T., KUMAR K.K., 2022 - Ecofriendly management of Coconut Rhinoceros Beetle Grubs, Oryctes rhinoceros Linnaeus (Scarabaeidae: Coleoptera) using Botanical Extracts under Laboratory Condition. - Ecol. Environ. Conserv. 28: 79–79. DOI: https://doi.org/10.53550/EEC.2022.v28i01s.079
MERGHEM A., MOHAMED A.A.-R., 2017 - Impact of Neem Extracts, Azadirachta indica A. Juss Induced against Red Palm Weevil, Rhynchophorus ferrugineus (Olivier) Attacking Date Palm Orchards in Egypt. - Egypt. Acad. J. Biol. Sci. 9: 31–54. DOI: https://doi.org/10.21608/eajbsf.2017.17032
MOHAMED H.A., GHONEIM K.S., BREAM A.S., 2003 - Neemazal Effects on the Consumption and Utilization of Food in Some Early Larval Instars of the Cotton Leafworm, Spodoptera littoralis Boisd. (Noctuidae:Lepidoptera). - Pakistan J. Biol. Sci. 6: 1118–1124. DOI: https://doi.org/10.3923/pjbs.2003.1118.1124
NAIR P.M.G., PARK S.Y., CHOI J., 2013 - Evaluation of the effect of silver nanoparticles and silver ions using stress responsive gene expression in Chironomus riparius. - Chemosphere 92: 592–599. DOI: https://doi.org/10.1016/j.chemosphere.2013.03.060
NASSAR M., ABDULLAH M., 2001 - Evaluation of azadirachtin for control of the red palm weevil Rhynchophorus ferrugineus (Olivier) (Coleoptera, Curculionidae). - J. Egypt. Ger. Soc. Zool. 36: 163–173.
PAVELA R., KAZDA J., HERDA G., 2009 - Effectiveness of Neem (Azadirachta indica) insecticides against Brassica pod midge (Dasineura brassicae Winn.). - J. Pest Sci. (2004). 82: 235–240. DOI: https://doi.org/10.1007/s10340-009-0244-2
PINHEIRO D.H., SIEGFRIED B.D., 2020 - Selection of reference genes for normalization of RT-qPCR data in gene expression studies in Anthonomus eugenii Cano (Coleoptera: Curculionidae). - Sci. Rep. DOI: https://doi.org/10.1038/s41598-020-61739-z
QASIM M., XIAO H., HE K., OMAR M.A.A., HUSSAIN D., NOMAN A., RIZWAN M., KHAN K.A., AL-ZOUBI O.M., ALHARBI S.A., WANG L., LI F., 2021 - Host-pathogen interaction between Asian citrus psyllid and entomopathogenic fungus (Cordyceps fumosorosea) is regulated by modulations in gene expression, enzymatic activity and HLB-bacterial population of the host. - Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 248: 109112. DOI: https://doi.org/10.1016/j.cbpc.2021.109112
RADHIKA S., SAHAYARAJ K., SENTHIL-NATHAN S., HUNTER W.B., 2018 - Individual and synergist activities of monocrotophos with neem based pesticide, Vijayneem against Spodoptera litura Fab. - Physiol. Mol. Plant Pathol. 101: 54–68. DOI: https://doi.org/10.1016/j.pmpp.2017.05.004
RASHID M., KHAN R.A., ZHANG Y.L., 2013 - Over-expression of Cytochrome P450s in helicoverpa armigera in Response to Bio-insecticide, Cantharidin. - Int. J. Agric. Biol. 15: 993–997.
REHIMI N., ALOUANI A., SOLTANI N., 2011 - Efficacy of azadirachtin against mosquito larvae Culex pipiens (Diptera: Culicidae) under laboratory conditions. - Eur. J. Sci. Res. 57: 223–229.
REYAD N.F., AL-GHAMDI H.A., ABDEL-RAHEEM M.A., AL-SHAERI M.A., 2020 - The effects of botanical oils on the red palm weevil, rhynchophorus ferrugineus olivier (Coleoptera: Curculionidae). - Appl. Ecol. Environ. Res. 18: 2909–2919. DOI: https://doi.org/10.15666/aeer/1802_29092919
SALAMA H.S., ISMAIL I.A., 2007 - Potential of certain natural extracts for the control of the red palm weevil, Rhynchophorus ferrugineus (Oliver). - Arch. Phytopathol. Plant Prot. 40: 233–236. DOI: https://doi.org/10.1080/03235400500383669
SCHNEIDER L.C.L., SILVA C.V. DA, CONTE H., 2017 - Toxic effect of commercial formulations of neem oil, Azadirachta indica A. Juss., in pupae and adults of the sugarcane borer, Diatraea saccharalis F. (Lepidoptera: Crambidae). - Arq. Inst. Biol. (Sao. Paulo). 84: 1–8. DOI: https://doi.org/10.1590/1808-1657000432014
SENTHIL-NATHAN S., 2013 - Physiological and biochemical effect of neem and other Meliaceae plants secondary metabolites against Lepidopteran insects. - Front. Physiol. 4 DEC: 1–17. DOI: https://doi.org/10.3389/fphys.2013.00359
SOYELU O.J., OLUWAMAKINDE B.A., OKONJI R.E., 2020 - Effect of Neem, Siam Weed and Vetiver Oils on Physiological Reactions and Fitness of House Fly, Musca domestica L. - J. Appl. Sci. Environ. Manag. 24: 519–523. DOI: https://doi.org/10.4314/jasem.v24i3.20
SU S., JIAN C., ZHANG X., FANG S., PENG X., PIÑERO J.C., CHEN M., 2021 - Sublethal Effects of Abamectin on the Development, Reproduction, Detoxification Enzyme Activity, and Related Gene Expression of the Oriental Fruit Moth (Lepidoptera : Tortricidae). - J. Econ. Entomol. 114: 2430–2438. DOI: https://doi.org/10.1093/jee/toab196
SUN Y., OBERLEY L. W., LI Y., 1988 - A simple Method for Clinical Assay of Superoxide Dismutase. - Clin. Chem. 34: 497–500. DOI: https://doi.org/10.1093/clinchem/34.3.497
TANG P.A., DUAN J.Y., WU H.J., JU X.R., YUAN M.L., 2017 - Reference gene selection to determine differences in mitochondrial gene expressions in phosphine-susceptible and phosphine-resistant strains of Cryptolestes ferrugineus, using qRT-PCR. - Sci. Rep. https://doi.org/10.1038/s41598-017-07430-2 DOI: https://doi.org/10.1038/s41598-017-07430-2
THOMAS M.C., 2010 - Giant palm weevils of the Genus Rhynchophorus (Coleoptera: Curculionidae) and their threat to Florida palms. - Pest Alert DACS-P-01682 1–2.
TRISYONO A., WHALON M.E., 1999 - Toxicity of Neem Applied Alone and in Combinations with Bacillus thuringiensis to Colorado Potato Beetle (Coleoptera: Chrysomelidae). - J. Econ. Entomol. 92: 1281–1288. DOI: https://doi.org/10.1093/jee/92.6.1281
VALIZADEH B., SENDI J.J., ZIBAEE A., OFTADEH M., 2013 - Effect of Neem based insecticide Achook ® on mortality, biological and biochemical parameters of elm leaf beetle Xanthogaleruca luteola (Col.: Chrysomelidae). - J. Crop Prot 2: 319–330.
VANHAELEN N., HAUBRUGE E., LOGNAY G., FRANCIS F., 2001 - Hoverfly glutathione S-transferases and effect of brassicaceae secondary metabolites. - Pestic. Biochem. Physiol. 71: 170–177. DOI: https://doi.org/10.1006/pest.2001.2573
WEATHERSBEE A.A., TANG Y.Q., 2002 - Effect of neem seed extract on feeding, growth, survival, and reproduction of Diaprepes abbreviatus (Coleoptera: Curculionidae). - J. Econ. Entomol. 95: 661–667. DOI: https://doi.org/10.1603/0022-0493-95.4.661
WEISSLING AND GIBLIN-DAVIS R.M., 1997 - Palmetto weevil, Rhynchophorus cruentatus Fabricius 1. - Univ. Florida, Entomol. Nematol. Dep. IFAS 1–6.
WEISSLING T.J., GIBLIN-DAVIS R.M., 1994 - Fecundity and fertility of Rhynchophorus cruentatus (Coleoptera: Curculionidae). - Florida Entomol. 77: 373–378. DOI: https://doi.org/10.2307/3496107
WEISSLING T.J., GIBLIN-DAVIS R.M., GRIES G., GRIES R., PEREZ A.L., PIERCE H.D., OEHLSCHLAGER A.C., 1994 - Aggregation pheromone of palmetto weevil, Rhynchophorus cruentatus (F.) (Coleoptera: Curculionidae). - J. Chem. Ecol. 20: 505–515. DOI: https://doi.org/10.1007/BF02059593
WONDAFRASH M., GETU E., TEREFE G., 2012 - Neem, Azadirachta indica (A. Juss) Extracts Negatively Influenced Growth and Development of African Bollworm, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). - Acad. J. Entomol. 5: 22–27.
WU C., DING C., CHEN S., WU X., ZHANG L., SONG Y., LI W., ZENG R., 2021 - Exposure of Helicoverpa armigera Larvae to Plant Volatile Organic Compounds Induces Cytochrome P450 Monooxygenases and Enhances Larval Tolerance to the Insecticide Methomyl. - Insects 12: 238. DOI: https://doi.org/10.3390/insects12030238
YADAV R., SINGH S., SINGH A.N., 2022 - Biopesticides : Current status and future prospects. - Proc. Int. Acad. Ecol. Enviromental Sci. 12: 211–233.
YAN T.K., ASARI A., SALLEH S.A., AZMI W.A., 2021 - Eugenol and Thymol Derivatives as Antifeedant Agents against Red Palm Weevil, Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae) larvae. - Insects 12. DOI: https://doi.org/10.3390/insects12060551
YU H., YANG X., DAI J., LI Y., VEERAN S., LIN J., SHU B., 2022 - Effects of azadirachtin on detoxification-related gene expression in the fat bodies of the fall armyworm, Spodoptera frugiperda. - Environ. Sci. Pollut. Res. DOI: https://doi.org/10.1007/s11356-022-19661-6
YU S.J., BERRY R.E., TERRIERE L.C., 1979 - Host plant stimulation of detoxifying enzymes in a phytophagous insect. - Pestic. Biochem. Physiol. 12: 280–284. DOI: https://doi.org/10.1016/0048-3575(79)90113-5
YUAN Y., LI L., ZHAO J., CHEN M., 2020 - Effect of Tannic Acid on Nutrition and Activities of Detoxification Enzymes and Acetylcholinesterase of the Fall Webworm (Lepidoptera: Arctiidae). - J. Insect Sci. 20: 1–7. DOI: https://doi.org/10.1093/jisesa/ieaa001
ZIBAEE A., BANDANI A., 2010 - A study on the toxicity of a medicinal plant, Artemisia Annua L. (Asteracea) extracts to the sunn pest, eurygaster integriceps puton (Hemiptera: Scutelleridae). - J. Plant Prot. Res. 50: 79–85. DOI: https://doi.org/10.2478/v10045-010-0014-4
ZÓŁTOWSKA K., GROCHLA P., LOPIEŃISKA-BIERNAT E., 2006 - Activity of superoxide dismutase in Galleria mellonella larvae infected with entomopathogenic nematodes Steinernema affinis and S. feltiae. - Wiadomości Parazytol. 52: 283–286.

Supporting Agencies

This work was supported by funding from the Egyptian cultural affairs and mission sector, Ministry of Higher Education, Cairo, Egypt.

How to Cite

Gabr, B., Lemmons, J., & El-Bokl, M. (2022). Potential of neem oil extract® against Palmetto weevil larvae, <em>Rhynchophorus cruentatus </em>Fabricius (Coleoptera: Curculionidae) and its impact on some detoxification enzymes. Journal of Entomological and Acarological Research, 54(1). https://doi.org/10.4081/jear.2022.10470