Cerebral venous drainage through internal jugular vein


Submitted: 6 July 2019
Accepted: 12 September 2019
Published: 2 October 2019
Abstract Views: 3380
PDF: 813
HTML: 2189
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Internal jugular veins (IJVs) are the largest veins in the neck and are considered the primary cerebral venous drain for the intracranial blood in supine position. Any reduction in their flow could potentially results an increase in cerebral blood volume and intracranial pressure (ICP). The right internal jugular vein communicates with the right atrium via the superior vena cava, in which a functional valve is located at the union of the internal jugular vein and the superior vena cava. The atrium aspiration is the main mechanism governing the rhythmic leaflets movement of internal jugular vein valve synchronizing with the cardiac cycle. Cardiac contractions and intrathoracic pressure changes are reflecting in Doppler spectrum of the internal jugular vein. The evaluation of the jugular venous pulse provides valuable information about cardiac hemodynamics and cardiac filling pressures. The normal jugular venous pulse wave consists of three positive waves, a, c, and v, and two negative waves, x and y. A normal jugular vein gradually reduces its longitudinal diameter, as described in anatomy books; it is possible to segment IJV into three different segments J3 to J1, as it proposed in ultrasound US studies and CT scan. In this review, the morphology and methodology of the cerebral venous drainage through IJV are presented.


Mohammed, N. Y., Di Domenico, G., & Gambaccini, M. (2019). Cerebral venous drainage through internal jugular vein. Veins and Lymphatics, 8(1). https://doi.org/10.4081/vl.2019.8379

Downloads

Download data is not yet available.

Citations