A review of sulfoxaflor, a derivative of biological acting substances as a class of insecticides with a broad range of action against many insect pests


Sulfoxaflor is an insecticide used against sap-feeding insects (Aphididae, Aleyrodidae) belonging to the family of sulfoximine; sulfoximine is a chiral nitrogen-containing sulphur (VI) molecule; it is a sub-group of insecticides that act as nicotinic acetylcholine receptor (nAChR) competitive modulators. Sulfoxaflor binds to nAChR in place of acetylcholine and acts as an allosteric activator of nAChR. Thanks to its mode of action resistance phenomena are uncommon, even few cases of resistance were reported. It binds to receptors determining uncontrolled nerve impulses followed by muscle tremors to which paralysis and death follows. Sulfoxaflor acts on the same receptors of neonicotinoids as nicotine and butenolides, but it binds differently. It binds to insects nAChRs more strongly than to mammals’ ones, so it is much less toxic for mammals and man. Sulfoxaflor is supposed to have a low environmental impact and is not much aggressive against non-target species. Unfortunately, it is toxic to impollinator insects, so it must be used only in compliance with a series of legislative norms. At present sulfoxaflor can be considered one of the most interesting products to be used in fighting against agriculture insect pests.



PlumX Metrics


Download data is not yet available.


AHM-AD H., ARIF M. I., NAVEED M., 2010  Dynamics of resistance to organophosphate and carbamate insecticides in the cotton whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) from Pakistan.  J. Pest. Sci. 83: 409420.

ANH K.T., ALVES T.M., KOCH R.L., 2016  Potential for Sulfoxaflor to Improve Conservation Biological Control of Aphis glycines (Hemiptera: Aphididae) in Soybean.  Journal of Economic Entomology, 109(5): 21052114.

BABCOCK J.M., GERWICK CB., HUANG JX., LOSO MR., NAKAMURA G., NOLTING SP., ROGERS RB., SPARKS T.C., THOMAS J., WATSON GB., ZHU YM., 2011 – Biological characterization of sulfoxaflor, a novel insecticide.  Pest Management Science Background 67(3): 328–334

BACCI L., CRIVELLI L., CONVERTINI S., D’ASCENZO D:, 2018  Acquisizioni preliminari per il contenimento di infestazioni di fillossera della vite con sulfoxaflor (isoclasttm) in Abruzzo  Atti Giornate Fitopatologiche 2018

BACCI L., FENIO A., CONVERTINI S., 2018 – IPM strategy for white fly insecticides in European greenhouse of tomato. ECE2018 XI European Congress Entomology Naples 2-6/July/2018 – Abstracts book. PO243: 228

BEDFORD I.D., BRIDDON R.W., BROWN J.K., ROSELL R.C., MARKHAM P.G., 1994 – Geminivirus transmission and biological characterisation of Bemisia tabaci (Gennadius) biotypes from different geographic regions. – Annals of Applied Biology 125: 311–325.

BOSCO D., DEMICHELIS S., SIMÒN B., RAPISARDA C., MORIONES E., CENIS J.L., 2001.– Presence and distribution of Bemisia tabaci (Hemiptera: Aleyrodidae) biotypes in Italy, p. 29. –In: European whitefly symposium, 27 February-3 March 2001, Ragusa, Sicily, Italy.

BOSELLI M., CAVAZZA F., FRANCESCHELLI F. 2018  Verifica dell’attività di sulfoxaflor (isoclast) nella lotta all’afide grigio del melo (Dysaphis plantaginea)  Atti Giornate Fitopatologiche 2018

BOTTACINI T., 2012  Influenza di condizioni ambientali e modalita’ di somministrazione sulla DL50 di insetticidi sistemici in Apis mellifera L.  Università degli Studi di Padova Corso di laurea in Scienze e Tecnologie Agrarie. 99pp.

BRAR G.S., MARTINI X., STELINSKI L.L., 2017 – Lethal and sublethal effects of a novel sulfoximine insecticide sulfoxaflor against Asian citrus psyllid and its primary parasitoid under laboratory and field conditions. – International Journal of Pest Management 63(4): 299–308

BROWN JK., 2007 –The Bemisia tabaci complex: genetic and phenotypic variability drives Begomovirus spread and virus diversification.– APSnet Features, doi: 10.1094/APSnetFeature/2007–0107

BUZZETTI K., CHORBADJIAN R.A., NAUEN R., 2015 – Resistance Management for San Jose Scale (Hemiptera: Diaspididae). – Journal of Economic Entomology 108(6): 2743–2752

CAMPOS M.R., SILVA T.B.M., SILVA W.M., SILVA J.E., SIQUEIRA H.A.A., 2015 Spinosyn resistance in the tomato borer Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). – J. Pest. Sci. 88: 405–412.

CASIDA, J.E, 2018 – Neonicotinoids and other Insect Nicotinic Receptor Competitive Modulators: Progress and Prospects. – Annual Review of Entomology, 63: 125–144

CENTNER T.J., BREWER B., LEAL I., 2018 – Reducing damages from sulfoxaflor use through mitigation measures to increase the protection of pollinator species. – Land Use Policy 75:70–76

CHAILLEUX A., DROUI A., BEAREZ P., DESNEUX N. 2017  Survival of a specialist natural enemy experiencing resource competition with an omnivorous predator when sharing the invasive prey Tuta absoluta  Ecology & Evolution 7:8329–8337.

CHEN X.D., STELINSKI L.L., 2017 – Rapid detection of insecticide resistance in Diaphorina citri (Hemiptera: Liviidae) populations, using a bottle bioassay. – Florida Entomologist 100(1): 124 133

COCUZZA G.E.M., CONVERTINI S., BACCI L., RAPISARDA C., 2018a – Side effects of sulfoxaflor on Bombus terrestris (L.) (Hymenoptera, Apidae) in protected tomato crop. 14," meeting of the IOBC/WPRS Bulletin, Working Group "Integrated control in protected crops, Medterranean climate".

COCUZZA G.E.M., CONVERTINI S., BACCI L., RAPISARDA C., 2018b  Side effects of sulfoxaflor on Bombus terrestris (L.) (Hymenoptera, Apidae) in protected tomato crop  14th meeting of the IOBC/WPRS Working Group "Integrated control in protected crops, Mediterranean climate" Oeiras (Lisbona) dal 4-7/9/2018.

CONVERTINI S., CIOFFI M., TESCARI E., FENIO A., BACCI L. 2018a  ISOCLASTTM: esperienze di controllo delle principali cocciniglie dei fruttiferi Atti Giornate Fitopatologiche 2018

CONVERTINI S., CIOFFI M., TESCARI E., FENIO A., BACCI L. 2018b ISOCLASTTM: Attività nei confronti di Aphis gossipii Glover su cucurbitaceae in pieno campo Atti Giornate Fitopatologiche 2018

COSTA, L.M., GRELLA, T.C., BARBOSA, R.A., MALASPINA O., NOCELLI R.C.F., 2015 – Determination of acute lethal doses (LD50 and LC50) of imidacloprid for the native bee Melipona scutellaris Latreille, 1811 (Hymenoptera: Apidae). – Sociobiology 62(4): 578582

CUTLER P., SLATER R., EDMUNDS A.J.F., MAIENFISCH P., HALL R.G., EARLEY F.G.P., PITTERNA T., SITARAM P., PAUL V.L., GOODCHILD J., BLACKER M., HAGMANN L., CROSSTHWAITE A.J. 2013  Investigating the mode of action of sulfoxaflor: a fourth-generation neonicotinoid  Pest Manag. Sc. 69(5):607619.

DE BARRO P.J., LIU S.S., BOYKIN L.M., DINSDALE A.B., 2011– Bemisia tabaci: a statement of species status. – Annual Review of Entomology, 56: 1–19.

DEMICHELIS S., BOSCO D., MANINO A., 2000 – Distribution of Bemisia tabaci (Hemiptera: Aleyrodidae) biotypes in Italy – The Canadian Entomoiogist, 132: 1–9.

DESNEUX N., DECOURTYE A., DELPUECH J.M., 2007 – The sublethal effects of pesticides on beneficial arthropods. – Annual Review Entomology 52: 81–106.

DINSDALE A., COOK L., RIGINOS C., BUCKLEY Y.M., DE BARRO P.J., 2010 – Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries.– Annals of the Entomological Society of America, 103(2): 196–208.

Dow AgroSciences 2017– Technical Bulletin 75 pp

ELBAZ M., WEISER M., MORIN S., 2011 – Asymmetry in thermal tolerance trade–offs between the 8 and Q sibling species of Bemisia tabaci (Hemiptera: Aleyrodidae). – J. Evolution. Biol. 24: 1099–1109.

FANG, Y., JIAO X., XIE W., WANG S., WU Q., SHI X., CHEN G., SU Q. , YANG X. , PAN H., ZHANG Y. , 2013 Tomato yellow leaf curl virus alters the host preferences of its vector Bemisia tabaci. Sci. Rep. 3, 2876, doi: 10.1038/srep02876.

GARZON A., MEDINA P., AMOR F., VINUELA E., BUDIA F., 2015 – Toxicity and sublethal effects of six insecticides to last instar larvae and adults of the biocontrol agents Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) and Adalia bipunctata (L.) (Coleoptera: Coccinellidae) – Chemosphere 132: 87–93.

GORE J., COOK D., CATCHOT A., LEONARD BR., STEWART SD., LORENZ G., KERNS D. 2013 – Cotton Aphid (Heteroptera: Aphididae) Susceptibility to Commercial and Experimental Insecticides in the Southern United States – Journal of Economic Entomology106(3): 14301439.

GUEDES R.N.C., SMAGGHE G., STARK L.D., DESNEUX N., 2016 – Pesticide–Induced Stress in Arthropod Pests for Optimized Integrated Pest Management Programs. – Annual Review Entomology 61: 43–62.

HOROWITZ, A. R., KONTSEDALOV, S., KHASDAN, V., ISHAAYA, I. 2005 Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Arch. Insect. Biochem 58: 216–225.

HSIEH C.H., WANG H.Y., CHEN Y.F., KO C.C., 2012 – Loop–mediated isothermal amplification for rapid identification of biotypes B and Q of the globally invasive pest Bemisia tabaci, and studying population dynamics. Pest. Manag. Sci. 68: 1206–1213.

IIDA H., KITAMURA T., HONDA K. 2009 – Comparison of egg–hatching rate, survival rate and development time of the immature stage between 8–and Q–biotypes of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) on various agricultural crops. – Appl. Entomol. Zool. 44: 267–273.

IWASA T.; MOTOYAMA N.; AMBROSE J.T., Roe RM., 2004 – Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera – Crop Protection 23(5): 371–378.

KONTSEDALOV S., BU–MOCH F., LEBEDEV G., CZOSNEK H., HOROWITZ A.R., GHANIM M., 2012 – Bemisia tabaci Biotype Dynamics and Resistance to Insecticides in Israel During the Years 2008–2010. – J. Integ. Agr. 11: 312–320.

LAURINO D., MANINO A., PATETTA A., ANSALDI M., PORPORATO M., 2010  Acute oral toxicity of neonicotinoids on different bee strains.  Redia, 93: 99-102.

LAURINO D., MANINO A., PATETTA A., PORPORATO M. 2013 Toxicity of neonicotinoid insecticides on different honey bee genotypes  Bulletin of Insectology 66 (1): 119-126

LAWRENCE I.G., SARJEET S.G., 2010  Insect Control: Biological and Synthetic Agents.  Elsevier, London UK: 490 pp.

LEBARON M.J., GETER D.R., RASOULPOUR R.J., GOLLAPUDI B.B., THOMAS J., MURRAY J., KAN H.L., WOOD A.J., ELCOMBE C., VARDY A., MCEWAN J., TERRY C., BILLINGTON R.AF., 2013 – An integrated approach for prospectively investigating a mode–of–action for rodent liver effects – Toxicology and Applied Pharmacology 270: 164–173

LIANG P., TIAN Y.A., BIONDI A., DESNEUX N., GAN X.W., 2012 – Short–term and transgenerational effects of the neonicotinoid nitenpyram on susceptibility to insecticides in two whitefly species. – Ecotoxicology 21: 1889–1898.

LIAO X., MAO K.K., ALI E., ZHANG X.L., WAN H., LI J.H., 2017 – Temporal variability and resistance correlation of sulfoxaflor susceptibility among. Chinese populations of the brown planthopper Niloparvata lugens (Stal) Crop Protection 102: 141–146.

LIU B., YAN F., CHU D., PAN H., JIAO X., XIE W., WU Q., WANG S., XU B., ZHOU X., ZHANG Y., 2012 – Difference in Feeding Behaviours of Two Invasive Whiteflies on Host Plants with Different Suitability: Implication for Competitive Displacement. – Int. Biol. Sci. 8: 697–706.

LONGHURST C., BABCOCK J.M., DENHOLM I., GORMAN K., THOMAS J.D., SPARKS T.C., 2013 –. Cross–resistance relationships of the sulfoximine insecticide sulfoxaflor with neonicotinoids and other insecticides in the whiteflies Bemisia tabaci and Trialeurodes vaporariorum – Pest Management Science Background 69(7): 809–813.

LUO C., JONES C.M., DEVINE G., ZHANG F., DENHOLM I., GORMAN K., 2010 – Insecticide resistance in Bemisia tabaci biotype Q (Hemiptera: Aleyrodidae) from China. – Crop. Prot. 29: 429–434.

MAHADAV A., KONTSEDALOV S., CZOSNEK H., GHANIM M., 2009 – Thermotolerance and gene expression following heat stress in the whitefly Bemisia tabaci B and Q biotypes. – Insect. Biochem. Molec. 39: 668–676.

NAVAS–CASTILLO J., FIALLO–OLIVÉ E., SÁNCHEZ CAMPOS S., 2011 – Emerging virus disease transmitted by whiteflies.– Annual Review of Phytopathology 49: 219–248.

OLIVEIRA E.E.,, SCHLEICHERA S., BÜSCHGES A.,, SCHMIDT J., KLOPPENBURG P., SALGADO V.L., 2011 – Desensitization of nicotinic acetylcholine receptors in central nervous system neurons of the stick insect (Carausius morosus) by imidacloprid and sulfoximine insecticides Insect Biochemistry and Molecular Biology 41: 872–880.

RODITAKIS E., VASAKIS E., GRISPOU M., STAVRAKAKI M., NAUEN R., GRAVOUIL M., BASSI A., 2015 – First report of Tuta absoluta resistance to diamide insecticides. – Journal of Pest Sciences 88: 9–16.

ROUSH R.T., TABASHNIK B.E. (eds.), 1991  Pesticide Resistance in Arthropods.  Springer, US: 303 pp.

SERDAR S., ARSLAN A., CHLORIDIS A., 2018 – Evaluation of the insecticide sulfoxaflor on important beneficial arthropods in citrus ecosystems in Turkey. – Integrated Control in Citrus Fruit Crops IOBC–WPRS Bulletin 132: 132–140.

SIVITER H., BROWN M. J. F., LEADBEATER E. 2018 Sulfoxaflor exposure reduces bumblebee reproductive success. Nature 561 (7721): 109

SMITH HA., GIURCANU MC., 2013 – Residual effects of new insecticides on egg and nymph densities of Bemisia tabaci (Hemiptera: Aleyrodidae). – Florida Entomologist 96(2): 504–511.

SPARKS T.C., DEBOER G.J., WANG N.X., HASLER J.M., LOSO M.R., GERALD B. WATSON G.B. 2012 Differential metabolism of sulfoximine and neonicotinoid insecticides by Drosophila melanogaster monooxygenase CYP6G1  Pesticide Biochemistry and Physiology 103: 159 –165.

TANG QL., XIANG M., HU H.M., AN C.J., GAO X.W., 2015 – Evaluation of Sublethal Effects of Sulfoxaflor on the Green Peach Aphid (Hemiptera: Aphididae) using Life Table parameters. – Journal of Economic Entomology 108(6): 2720–2728.

TESCARI E., FENIO A., BACCI L., BRADASCIO R., GIBERTI A., 2016 – Sulfoxaflor (Isoclast™ Active, Closer™), nuovo insetticida di Dow Agrosciences. Caratteristiche generali e risultati sperimentali. – Atti Giornate Fitopatologiche, 1: 3–12

TOMIZAWA M., CASIDA J.E., 2003 – Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors – Annual Rev. Entomol. 48:339–364

VANEGAS M., 2017 – The Silent Beehive: How the Decline of Honey Bee Populations Shifted the Environmental Protection Agency's Pesticide Policy towards Pollinators. – Ecology Law Quarterly 44(2): 311–341.

WANG Z., YAN H., YANG Y., WU Y., 2010 – Biotype and insecticide resistance status of the whitefly Bemisia tabaci from China. – Pest. Manag. Sci. 66, 1360–1366.

WATSON G.B., LOSO M.R., BABCOCK J.M., HASLER J.M., LETHERER T.J., YOUNG C.D., ZHU Y., CASIDA J.E., SPARKS T.C., 2011 – Novel nicotinic action of the sulfoximine insecticide sulfoxaflor. – Insect Biochemistry and Molecular Biology 41(7): 432–439

WEI X., PAN Y., XIN X., ZHENG C., GAO X., XI J., SHANG Q., 2017 – Cross–resistance pattern and basis of resistance in a thiamethoxam–resistant strain of Aphis gossypii Glover. – Pesticide Biochemistry and Physiology 138: 91–96.

WISLER G.C., DUFFUS E., LIU H.Y., LI R.H., 1998 – Ecology and epidemiology of whitefly–transmitted closteroviruses.– Plant Disease 82(3): 270–280.

XU L., ZHAO C.Q., XU D.J., XU G.C., XU X.L., HAN Z.J., ZHANG Y.N., GU Z.Y, 2017 – RNAi suppression of nuclear receptor genes results in increased susceptibility to sulfoxaflor in brown planthopper, Nilaparvata lugens. – Journal of Asia-Pacific Entomology 20(2): 645_653

ZASADA I., HÄFNER K., SCHALLER L., VAN ZANTEN B.T., LEFEBVRE M., MALAK-RAWLIKOWSK A., NIKOLOV D., RODRÍGUEZ-ENTRENA M., MANRIQUE R., UNGARO F., ZAVALLONI M., DELATTRE L., PIORR A., KANTELHARDT J., VERBURG P.H., VIAGGI D. 2017  A conceptual model to integrate the regional context in landscape policy, management and contribution to rural development: Literature review and European case study evidence.  Geoforum 82: 1-12.

ZHU Y.C., YAO J.X., ADAMCZYK J., LUTTRELL R., 2017 – Feeding toxicity and impact of imidacloprid formulation and mixtures with six representative pesticides at residue concentrations on honey bee physiology (Apis mellifera) – Plos One 7:1–19.

ZHU Y.M., LOSO M.R., WATSON G.B., SPARKS T.C., ROGERS R.B., HUANG J.X., GERWICK B.C., BABCOCK J.M., KELLEY D., HEGDE V.B., NUGENT B.M., RENGA J.M., DENHOLM I., GORMAN K., DEBOER G.J., HASLER J., MEADE T., THOMAS J.D., 2011 – Discovery and Characterization of Sulfoxaflor, a Novel Insecticide Targeting Sap–Feeding Pests. – Journal of Agricultural and Food Chemistry 59(7): 2950–2957

sulfoxaflor, target species, insecticides, resistance
  • Abstract views: 1726

  • PDF: 873
  • HTML: 548
How to Cite
Bacci, L., Convertini, S., & Rossaro, B. (2018). A review of sulfoxaflor, a derivative of biological acting substances as a class of insecticides with a broad range of action against many insect pests. Journal of Entomological and Acarological Research, 50(3). https://doi.org/10.4081/jear.2018.7836