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Abstract

In this review, the impact of restricted cere-
bral venous outflow on the biomechanics of
the intracranial fluid system is investigated.
The cerebral venous drainage system is often
viewed simply as a series of collecting vessels
channeling blood back to the heart. However
there is growing evidence that it plays an
important role in regulating the intracranial
fluid system. In particular, there appears to be
a link between increased cerebrospinal fluid
(CSF) pulsatility in the Aqueduct of Sylvius
and constricted venous outflow. Constricted
venous outflow also appears to inhibit absorp-
tion of CSF into the superior sagittal sinus.
The compliance of the cortical bridging veins
appears to be critical to the behaviour of the
intracranial fluid system, with abnormalities
at this location implicated in normal pressure
hydrocephalus. The compliance associated
with these vessels appears to be functional in
nature and dependent on the free egress of
blood out of the cranium via the extracranial
venous drainage pathways. Because constrict-
ed venous outflow appears to be linked with
increased aqueductal CSF pulsatility, it sug-
gests that inhibited venous blood outflow may
be altering the compliance of the cortical
bridging veins.

Introduction

Traditionally, the cerebral venous drainage
system has been viewed simply as a network of
collecting vessels channeling blood from the
brain to the heart; with the result its regulatory
role has tended to be over-looked. However, in
recent years there has been renewed interest
in the cerebral venous drainage system,
because of the discovery of the vascular syn-
drome chronic cerebrospinal venous insuffi-
ciency (CCSVI),! which is characterized by
restricted cerebral venous outflow and
increased hydraulic resistance to blood flow
back to the heart.? Although the subject of
CCSVI has been mired with controversy,® with
many disputing the validity of the syndrome,*$
there is increasing evidence that venous
drainage anomalies may be associated with

physiological changes in the intracranial
space.”® This has precipitated renewed inter-
est in the role that venous anomalies might
play in neurological disease,’ something which
has highlighted the close link between the
venous drainage system and the dynamics of
the cerebrospinal fluid (CSF) system."” In this
review we investigate the link between
restricted cerebral venous outflow and the bio-
mechanics of the CSF system.

Intracranial fluid volume
regulatory mechanism

Being encased in a rigid enclosure, the brain
employs a complex intracranial fluid regulatory
mechanism to control the pulsatility of blood
flow through the cerebral vascular bed."* This
system utilizes a sophisticated windkessel
mechanism to compensate for the transient
increases in arterial blood volume that occur
during systole, by displacing an approximately
equal volume of CSF out of the cranium into
the spinal column' (Figure 1). As such, the
system maintains Monro-Kellie homeostasis
and ensures that the flow of blood through the
cerebral capillary bed is smooth and non-pul-
satile in healthy young adults.'"'> The whole
system is driven by volumetric changes in the
arterial pulse, which are transferred to the
CSF, causing it to pulse backwards and for-
wards across the foramen magnum (FM).
Although in healthy young adults blood flow
through the cerebral capillary bed is normally
free of any pulse, by the time it reaches the
dural sinuses it once again exhibits pulsatile
characteristics.!"16 This suggests that the CSF
pulse interacts with the venous flow some-
where in the cranium to regulate blood out-
flow. While this mechanism has generally been
thought to be a passive interaction,’ recent
evidence has emerged to suggest that active
venoconstriction of the large extracranial
veins may also play a part in the regulatory
process.!”

Deeper insights into the dynamics of the
intracranial fluid system can be gained by con-
sidering how the fluid flows in and out of the
cranium vary over the cardiac cycle. Transient
arterial, venous, and CSF flows in and out of
the cranium are illustrated in Figure 2, which
shows the cervical pulses for a typical healthy
individual.'® From this it can be seen that the
system is driven by the arterial pulse, which as
it enters the cranium during systole greatly
increases the volume of blood in the pial arter-
ies.”® This peaks at about 0.23 of the cardiac
cycle and is closely followed by the peak in CSF
flow through the FM, which occurs at 0.28 of
the cardiac cycle. Finally, in late systole at
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about 0.35 of the cardiac cycle, there is a peak
in the venous blood flow leaving the cranium.
Figure 2 also shows the CSF pulse in the
Aqueduct of Sylvius (AoS), which in compari-
son to the cervical CSF pulse, exhibits a much
smaller amplitude and is out of phase.

From Figure 2 it can be seen that during
diastole there is a decrease in the venous
blood flow rate leaving the cranium. Given that
blood flow through the cerebral capillary bed
remains relatively constant throughout the
cardiac cycle, this implies that during diastole,
venous blood is being stored somewhere in the
cranium, only to be rapidly ejected during sys-
tole. While the physiological mechanisms
associated with this strange phenomenon are
poorly understood, it is known that approxi-
mately 70% of intracranial blood volume is
located within the venous compartments,'
many of which are thin-walled veins that can
readily expand and collapse with small
changes in transmural pressure.?’?! It is there-
fore likely that blood is stored in these vessels
during diastole. A number of researchers have
reported the presence of regulatory
sphincters,”??® which control the discharge
from these veins into the superior sagittal
sinus (SSS), and it has been postulated that
constriction of these sphincters causes the
cortical veins to engorge and puff out, before
periodically discharging into the SSS.2
Evidence supporting this hypothesis comes
from Greitz** and Nakagawa et al.,”> who both
observed the pulsatile compression of cortical
bridging veins by the sub-arachnoid CSE.

[page 81]



\Y Review

Cerebrospinal fluid bulk flow

In addition to the CSF pulse, there is a slow
bulk flow of CSF from the choroid plexus (CP)
to the SSS, via the arachnoid villi (AV), driven
by the pressure gradient between the two.
While it used to be assumed that all the CSF
was absorbed through the AV into the SSS,%%
it is now thought that some CSF drains to the
lymph nodes via nasal lymphatics.?? In ani-
mals, as much as 50% of CSF drains to the
lymph nodes,**?! whereas in adult humans a
greater proportion appears to drain directly
into the venous blood via the AV,**#! with lym-
phatic drainage playing only a minor role.?’
The SSS acts as a collecting vessel for CSF
from the sub-arachnoid space (SAS). CSF
absorption into the SSS via the AV, which has
been measured in the range 4.5-9.4 mm?%s in
healthy individuals,?® is very susceptible to
changes in the pressure difference between
the SAS and SSS.26% In a study involving 100
healthy adults, Ekstedt’® demonstrated that
there is a linear relationship between this
pressure difference and CSF absorption
through the AV, with the average rate of
absorption being 2.397 mm%*s/mmHg. They
measured the mean CSF pressure in the SAS
[ie. the intracranial pressure (ICP)] as being
10.35 mmHg when supine, and calculated that
the mean pressure in the SSS was 7.57 mmHg,
which equates to a mean pressure drop of 2.78
mmHg across the AV.

CSF is produced in the CP, which are located
in the walls of the third, fourth and lateral ven-
tricles. The endothelium of the CP is leaky,
with no tight junctions, allowing the transfer
of fluid (water) between the blood vessels and
the CSF*2 A number of researchers have
attempted to quantify CSF production rates in
humans. Cutler et ¢/*" in a study involving
children with sclerosing panencephalitis and
Pontine glioma, measured the mean rate of
formation of CSF to be 5.83 mm?%s. In a similar
study, Lorenzo et a/.** found the mean CSF pro-
duction rate in healthy children to be 6.00
mm?/s. It is possible to obtain a rough estimate
of the CSF production rate by monitoring the
flow of CSF through the AoS and calculating
the difference between the net negative CSF
flow (NNF) in the caudal direction and the net
positive flow (NPF) towards the third ventricle.
Using this methodology, Magnano et al.**
found the bulk aqueductal CSF flow in healthy
adults to be 7.1 mm?®beat (approximately 8.28
mm?s), whereas Beggs et al.” and Gorucu et
al® in similar studies found mean flow to be

Link between venous outflow
and cerebrospinal fluid dynamics

A number of studies have linked constricted
venous outflow with changes in the dynamics
of the cerebrospinal fluid system.”#* Under
normal circumstances, in healthy individuals
the CSF NPF per heartbeat is slightly less than
the CSF NNF, with the mathematical difference
between NNF and NPF representing the bulk
flow percolating through the ventricles. In a
magnetic resonance imaging (MRI) study
involving 67 multiple sclerosis (MS) patients
and 35 healthy controls, Magnano et al.*
observed a significant 48% mean decrease in
bulk CSF flow in the patients with MS and a
45% increase in mean NPF. Mean NNF was
also increased in the MS patients, although
this was not significant. Similar results were
obtained by Gorucu et al.,*> who also investi-
gated MS patients. However, although these
studies associated altered CSF dynamics with
MS, they did not observe the venous character-
istics of the subjects. By contrast, Zamboni et

CPress

al® investigated MS patients who were diag-
nosed with CCSVI. As with the other studies,
they observed a large reduction in bulk CSF
flow and a tendency towards increased aque-
ductal pulsatility in MS patients compared with
healthy controls. This suggested that in MS
patients retrograde venous hypertension in
the dural sinuses may be inhibiting absorption
of CSF into the SSS, reducing bulk flow and
altering aqueductal pulsatility.”® This opinion
is reinforced by the findings of an interven-
tional study in which venous angioplasty was
performed on MS patients with CCSVL*" Prior
to the intervention, these patients exhibited
increased CSF pulsatility in the AoS, which
was lessened when the restricted venous out-
flow pathways were opened up.

If altered CSF dynamics in patients with MS
is due to constricted venous outflow, then one
might expect the same phenomenon to be
observed in healthy individuals diagnosed with
CCSVL. In order to test this hypothesis, Beggs
et al.” performed a study on healthy individuals
not related to MS patients. The findings of this
study were similar to those of Magnano et al.,*
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Figure 1. Hydrodynamic model of the intracranial space, showing the interactions
between the arterial and venous blood flows and the cerebrospinal fluid (CSF). SSS, supe-
rior sagittal sinus; STS, straight sinus; SAS, sub-arachnoid space; AV, arachnoid villi; CP,
choroid plexus; FM, foramen magnum; WM, windkessel mechanism; SR, Staling resistor;
VL, lateral ventricle; V3, third ventricle; V4, fourth ventricle; AoS, aqueduct of Sylvius;
IJVs, internal jugular veins; VVs, vertebral veins. (Courtesy of Biomed Central, the orig-
inal publisher!?).

4.0 mm?%beat (approximately 4.65 mm?%s) and
2.17 mm?/s, respectively. Given that measured
CSF production rates appear to be of similar
magnitude to absorption rates through the AV,
it suggests that lymphatic drainage of CSF
plays only a relatively minor role in humans.
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and revealed a statistically significant 32%
increase in CSF NPF in the CCSVI positive sub-
jects, compared with the CCSVI negative indi-
viduals, with a tendency towards reduced CSF
bulk flow. As such, they suggested that CCSVI
is associated with altered CSF dynamics, irre-
spective of whether on not MS is present, rein-
forcing the opinion that increased aqueductal
CSF pulsatility is primarily a biomechanical
phenomenon associated with restricted
venous outflow from the cranium.

Increased cerebral blood flow pulsatility has
been linked with microstructural white matter
(WM) damage.?*“ Increased pulsatility in the
cerebral vascular bed is indicative of decreased
arterial compliance, and is associated with
arteriosclerosis?* and hypertension.” Hyper-
tension, a known risk factor for small vessel
disease* and leukoaraiosis (LA),* is thought
to be associated with changes in vascular
mechanics.’8% It has been suggested’® that
increased vascular pulsatility might cause WM
damage indicative of early stage LA
Bateman!! found blood flow through the WM to
be highly pulsatile in individuals with LA and
concluded that this would increase endothelial
shear stress, which in turn would cause WM
damage.”

Jolly et al.* found both increased blood flow
pulsatility and increased aqueductal CSF pulse
volume to be associated with microstructural
WM changes in elderly subjects. Daouk et al.®®
found apparent diffusion coefficient, an early
indicator of microstructural changes, to be
strongly correlated with aqueductal stroke vol-

ume in Alzheimer’s disease (AD) patients.
Furthermore, Magnano et a/.* found increased
aqueductal pulse to be associated with more
severe Tl and T2 lesion volumes in MS
patients. This raises intriguing questions
about the relationship between vascular pul-
satility and aqueductal CSF pulsatility. Greitz*
postulated a link between increased pulsation
in the cerebral vascular bed and CSF pulsatility
in the AoS, arguing that pulsations in the cere-
bral capillaries were transmitted through the
parenchyma to the lateral ventricles. However,
Beggs et al.” demonstrated that increased
aqueductal pulsatility is associated with con-
stricted cerebral venous outflow in healthy
adults, suggesting that other mechanisms may
be at work. Contrary to Greitz, Beggs argued
that impairment of cerebral venous outflow
would induce retrograde hypertension in the
dural sinuses, reducing intracranial compli-
ance and resulting in altered CSF dynamics.!

There is evidence that occlusion of the
venous drainage pathways can cause blood to
accumulate within the cranium, something
that theoretically could alter intracranial com-
pliance. In an experiment involving healthy
subjects, Kitano et al.*” showed that compres-
sion of the internal jugular veins (1JVs) result-
ed in a 5-20% increase intracranial blood vol-
ume. Frydrychowski et al.’® also performed bi-
lateral compression of the 1JVs on healthy indi-
viduals and found that it caused a reduction in
the width of the SAS - a finding consistent with
the storage of blood in the cortical veins.
Furthermore, in a recent study involving AD
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Figure 2. Transient intracranial blood and cerebrospinal fluid (CSF) flow rates over the
cardiac cycle in a healthy individual (the figure is based on data published in Ambarki ez

al., 2007'6).
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patients, Beggs et al.*® found jugular venous
reflux to be strongly associated with increased
brain parenchyma volume, something that
they postulated was possibly due to blood
retention within the brain. Because CSF is
incompressible, any reduction in the compli-
ance of the cortical bridging veins due to blood
retention should, in theory, impact on the
windkessel mechanism smoothing blood flow
to the cerebral vascular bed. Evidence to sup-
port this, comes from the study by
Frydrychowski et al.'® who observed that dur-
ing compression of the 1JVs, pulsatility in the
pial arteries traversing the SAS increased by
107%. Collectively, this suggests that venous
drainage anomalies are associated with blood
retention in the cerebral veins, and that this in
turn is associated with altered biomechanical
characteristics within the intracranial space.

Intracranial compliance
and venous drainage

Intracranial compliance is generally charac-
terized by the arteriovenous delay (AVD)
between the arterial pulse entering the crani-
um and the venous pulse leaving it.* One of
the major paradoxes of the intracranial fluid
system is associated with the AVD. How is this
possible, in a system where all the fluids
involved are incompressible and the cranium
is apparently a rigid container, to have a time
lag between the blood flow signals entering
and leaving the cranium? The brain parenchy-
ma tissue contains no gaseous material and is
generally thought to be incompressible,”’ due
to its very high water content.’! One possible
explanation to this apparent paradox lies in
the cortical bridging veins, which are coupled
via the dural sinuses to the extracranial
venous drainage system. These collapsible
thin walled vessels are thought to play an influ-
ential role in regulating intracranial compli-
ance.202152 The ability of the cortical veins to
store venous blood and delay outflow is
dependent on their compliance, with more
compliant veins storing greater volumes of
blood than incompliant ones.? As a result,
compliant veins exhibit greater pulsatility in
blood flow. Indeed, Bateman? eloquently
showed that in patients with normal pressure
hydrocephalus (NPH), cortical vein pulsatility
was 60% less than in the SSS, suggesting that
the disease is characterized by a reduction in
the compliance of the veins that bridge the
SAS. Bateman found that cortical vein compli-
ance was significantly increased following
shunt surgery, indicating that the compliance
attributed to these vessels is primarily func-
tional, not structural, and dependent on the
transmural pressure difference between the
venous blood and the sub-arachnoid CSF. This
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implies that the compliance of cortical bridg-
ing veins is dependent both on the cran-
iospinal compliance ? and the ability of any
venous blood stored in them to freely exit the
cranium via the extracranial veins. Therefore,
any constriction of the extracranial venous
drainage pathways could, in theory, influence
the compliant behaviour of the cortical veins.

A strong correlation has been demonstrated
between intracranial pressure (ICP) and
venous pressure in the dural sinuses,” and it
has been shown that venous sinus stenting in
patients with idiopathic intracranial hyperten-
sion (IIH) can rapidly normalize ICP>* While
this relationship is poorly understood, there is
evidence that the cortical bridging veins play
an influential role.’ Some have likened the
action of the cortical bridging veins to a
Starling resistor, which collapses, occluding
the blood flow, when the transmural pressure
reaches a certain threshold.® The fluid flow
through the bridging veins appears not to be
regulated by the pressure difference between
the two ends of the vessels, but rather by the
pressure difference between the blood in the
veins and the sub-arachnoid CSE. The cortical
bridging veins are very sensitive to small
changes in transmural pressure. Because they
are required to open and close to regulate blood
flow from the cortex, the cortical venous pres-
sure is only about 2 to 5 mmHg higher than the
ICP3 This means that small changes in ICP or
venous pressure can greatly influence the
behavior of blood flow from the cortex. Indeed,
it has been estimated that a change of as little
as 1.5 mmHg in the difference between ICP
and the pressure in the bridging veins could be
responsible for the difference between severe
hyperemia (CBF=1000 ml/min) to serve
ischemia (CBF=300 mL/min).%

Postural changes

Body position is known to have a profound
effect on the fluids in the cranium. When
upright the pressure in the 1JVs becomes sub-
atmospheric, with the result that they collapse.
This causes the cerebral venous drainage
pathways to be diverted through the vertebral
and epidural veins.® Also, when upright the
venous pressure at the confluens sinuum in
the dural sinuses becomes sub-atmospheric,
in adults dropping from a mean of 8.5 mmHg
when supine, to —8.6 mmHg when upright.’”
The ICP, which is normally in the range 7-15
mmHg when supine,” also falls when upright.
Alperin et @l in an MRI study involving
healthy young adults, found that in the upright
position there was a reduction in ICP, which
fell from a mean of 10.6 mmHg when supine, to
4.5 mmHg when upright. However, others dis-
agree with this finding and instead believe
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that ICP becomes sub-atmospheric when in
the upright position. For example, based on
the work of Chapman et al.,* Czosnyka and
Pickard®' concluded that ICP in adults in the
vertical position is negative, with a mean of
around —10 mmHg.

Given the magnitude of the pressure
changes involved in moving from the supine to
upright positions, there is reason to believe
that this might alter the functional behaviour
of the cortical bridging veins and also overall
intracranial compliance. Alperin et a/.** found
that in adults in the upright position, venous
outflow became considerably less pulsatile (a
43% reduction in the venous pulsatility index),
with flow occurring predominately through the
vertebral plexus, rather than the 1JVs, which
were the principle drainage pathway when
supine. As such, their findings appear to cor-
roborate those of Valdueza et a/.> Importantly,
Alperin et al also observed a 2.8-fold increase
in intracranial compliance when in the upright
position compared with supine position, which
was associated with 2.4-fold decrease in oscil-
latory volume of the cervical CSF flow. They
also found changing posture to the upright
position resulted in a 12% reduction in CBE
Alperin et al.’s findings are supported by those
of Ragauskas et al.®? who also observed
increased intracranial compliance when in the
upright position. While the precise physiologi-
cal mechanisms involved in the posture-relat-
ed regulatory process are not understood,
these findings appear to be consistent with
greatly reduced pressure in the dural sinuses
when in the upright position.®

Normal pressure hydro-
cephalus

Because increased aqueductal CSF pulsatil-
ity appears to be associated with constricted
venous outflow,” it is perhaps worth consider-
ing NPH in more detail, a disease that is
thought by some 21495264 to be associated with
venous anomalies and which is characterized
by increased aqueductal pulsatility.®7° Normal
pressure hydrocephalus occurs when there is
an abnormal accumulation of CSF in the ven-
tricles, causing them to become enlarged,” but
with little or no increase in ICP™™ NPH is
associated with significantly reduced CSF
absorption through the AV into the SSS.™7
Given that ICP does not substantially increase
in individuals with NPH, this suggests that
CSF is being resorbed elsewhere.”™ Bateman®
postulated that CSF resorption is likely to
occur in the subependymal brain parenchyma
and some have identified ventricular reflux in
NPH patients,”™ leading to oedema and neu-
ronal degeneration.” Tracer studies have
shown that CSF can pass through the ependy-
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mal wall of the ventricles and enter the brain
parenchyma.? Tight junctions are absent from
most of the ependyma lining the ventricles,
making it relatively permeable to the retro-
grade transport of water, particularly when the
CSF pressure is raised.*? Trypan blue injected
into the CSF in the ventricles readily spreads
into the brain,” and tracers injected into the
ventricles are taken up by perivascular
macrophages,® suggesting that CSF can per-
meate the perivascular spaces. In hydro-
cephalus patients, due to impaired drainage of
CSF from the ventricles, CSF can pass into the
periventricular WM as ventricular reflux caus-
ing interstitial edema.®

Bateman® found the AVD to be 53% shorter
in NPH patients compared with healthy con-
trols. A similar reduction in AVD in NPH
patients was observed in a subsequent study,”
and Mase et al.® independently confirmed this
finding, showing a 64% reduction in intracra-
nial compliance in NPH patients compared
with healthy controls. This suggests that NHP
is characterized by reduced intracranial com-
pliance. Bateman® showed that in NPH
patients cortical vein pulsatility was 60% less
than in the SSS, indicating a reduction in the
compliance of the bridging veins. However, fol-
lowing shunt insertion this situation was
reversed and there was a 186% increase in cor-
tical vein compliance within 3-5 days of the
intervention.

Using direct cannulation of the cortical
veins, venous sinuses and the SAS in dogs
with hydrocephalus, Portnoy et a/.% was able to
show that the cortical vein-to-CSF pressure dif-
ference in hydrocephalic animals was much
greater than that in the normal animals. In the
hydrocephalic dogs the cortical vein pressure
was 21.54 mmHg when the CSF pressure was
16.37 mmHg and the SSS pressure was 8.43
mmHg, compared with respective values of
11.72,10.46 and 5.15 mmHg in the normal ani-
mals. Interestingly, while the hydrocephalic
dogs exhibited an increase of only 3.28 mmHg
in SSS pressure, this was accompanied by a
9.82 mmHg increase in cortical vein pressure,
indicating that hydrocephalus profoundly
altered the functional relationship between
these two vessels. This suggests that in hydro-
cephalic patients, the sub-arachnoid CSF may
be interacting with cortical bridging veins at
their junction with the SSS,2 compressing
them so that the up-stream venous pressure is
greatly increased. Bateman® hypothesized
that this increase in cortical venous pressure
would be transmitted up-stream to the capillar-
ies resulting in increased production of inter-
stitial fluid. This, together with reduced CSF
absorption through the AV, would result in an
over production of fluid, which as Bateman
demonstrated using nuclear cisternography,
might result in retrograde CSF flow in the AoS
and ventricular reflux.?
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Hypothesis and perspectives

From the descusion above it can be seen
that while understanding of the intracranial
fluid system has improved over the years,
much still remains unknown. There is no uni-
fying model which adequately explains the
dynamic behaviour of all the component fluids
in the intracranial space, and the role of the
intracranial fluid system in either preventing,
or promoting, neurological disease is poorly
understood. In particular, the regulatory role of
the cerebral venous system is not well under-
stood. While the contribution of venous anom-
alies to various neurological pathologies is
becoming clearer,!®®” much remains to be dis-
covered. For example, there is a need to under-
stand the extent to which venous drainage
influences intracranial compliance. If one con-
siders the timing of the peaks in the respective
pulses shown in Figure 2, it can be seen that
arterial flow into the cranium peaks first, fol-
lowed closely by the cervical CSF peak in the
caudal direction, which is then followed by the
peak in venous flow out of the cranium. This
indicates that volumetric changes are being
rapidly transferred from one fluid to another,
which is what one would expect from a system
containing non-compressible materials.
Having said this, the presence of an AVD indi-
cates that compliance must exist somewhere
in the system. While the mechanisms involved
are poorly understood, the time delay between
the arterial and venous peak flows is likely to
be due to a combination of spinal column com-
pliance and the ability of the cortical bridging
veins to freely expel stored blood from the cra-
nium via the dural sinuses and extracranial
venous pathways. However, while this is a
plausible explanation, there is paucity of good
quality data on the subject and there is need to
better characterize the functional behaviour of
the cortical bridging veins both in healthy indi-
viduals and patients with neurological condi-
tions. A better understanding of the interac-
tion between the CSF, the bridging veins and
the SSS should enable new insights to be
gained into the pathophysiology of conditions
such as NPH and IIH.

From Figure 2 it can be seen that when the
cervical CSF flow reverses during diastole and
starts to flow back into the cranium, two things
happen: firstly, the volume of arterial blood
entering the cranium starts to fall, reducing
the volume of blood in the pial arteries; and
secondly, the volume of venous blood exiting
the cranium also starts to fall, indicating that
venous blood is being stored in somewhere in
the cranium, presumably in the compliant cor-
tical veins. Given that positive aqueductal flow,
towards the lateral ventricles, occurs late in
diastole, this suggests that the venous pulse is
likely to influence the dynamics of the CSF

flow in the AoS. Although, the mechanics of
this relationship are not understood, there is
good reason to believe that the two pulses
might be connected. Nakagawa et a/.?> and oth-
ers??? all observed the pulsatile compression
of cortical bridging veins by the sub-arachnoid
CSF, suggesting that the venous signal strongly
reflects transient volumetric changes in the
cortical bridging veins and thus the overall vol-
ume and compliance of the SAS.214%%* Given
that the SAS is a relatively large volume, with
low resistance to CSF flow, it is therefore rea-
sonable to assume that the CSF returning to
the cranium during diastole will first tend to
fill the SAS, before forcing its way up the rela-
tively high resistance AoS towards the third
ventricle. This can be clearly seen in the lag
between the cervical and aqueductal CSF sig-
nals in Figure 2. The fact that the aqueductal
CSF pulse lags the cervical CSF pulse by 0.2 to
0.3 of a cardiac cycle suggests that its dynamic
is influence by the compliance of the SAS.
Evidence supporting this opinion comes Beggs
et al.,” who found that constricted venous out-
flow was strongly associated with increased
aqueductal pulsatility healthy adults. The
hydraulic resistance of the extracranial venous
drainage system has been shown to be on aver-
age 63.5% greater in MS patients diagnosed
with CCSVI compared with CCSVI negative
healthy controls.? If constriction of the venous
drainage pathways inhibits free egress of
blood transiently stored in the cortical bridging
veins, then this is likely to reduce the compli-
ance of the whole SAS. This would mean that
there would be less room to accommodate the
returning CSF in the SAS, with the result that
more of the fluid would be forced up the AoS
towards the third ventricle, which is exactly
what Beggs et al. observed. Similar, results
have also been observed in MS patients®333,
Furthermore, Zivadinov et a/.,*” who performed
venous angioplasty on MS patients diagnosed
with CCSVI, found that the procedure normal-
ized the CSF pulsatility in the AoS, adding
weight to the argument that the functional
compliance of the cortical bridging veins pro-
foundly influences the dynamics of the aque-
ductal CSF pulse.

The degree to which constriction of the
extracranial venous pathways produces retro-
grade venous hypertension in the dural sinus-
es is also not well understood. Given that the
pressure drop through the extracranial venous
system is normally of the order 3-5 mmHg,* an
increase of 63% in the resistance of these ves-
sels (as calculated by Beggs et al?) would
equate to a pressure increase in the region
1.89-3.15 mmHg, assuming that the blood flow
rate remains constant. Although only a rough
estimation, this calculation is consistent with
the 2.21 mmHg mean increase in venous pres-
sure measured in CCSVI positive MS patients
by Zamboni et al¥ As such, it suggests that
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CCSVI is associated with mild venous hyper-
tension (<5 mmHg) in the dural sinuses;
something that would tend to reduce absorp-
tion of CSF by the AV?*" and inhibit the bulk
flow of CSE"$

Body position is known to be an important
factor affecting ICP. Mavrocordatos et al.*
showed that in anaesthetized neurosurgical
patients lying on a flat surface, the ICP could
be raised (mean increase) by 2.8-3.1 mmHg
through simply flexion of the head to left or
right, while rotating the head resulted in an
mean increase of 4.1-4.8 mmHg. While the rea-
sons for these changes are not fully under-
stood, there is evidence that rotation of the
head can compress both the jugular veins and
the vertebral veins,” inhibiting the cerebral
venous drainage. Iwabuchi et a/.%" investigated
changes in venous pressure in the confluens
sinuum associated with neck rotation and
found that in the supine position, a mean
increase of 30.3% was observed on a rightward
rotation, whereas only a mean elevation of
1.1% was observed for a leftward rotation.
However rather surprisingly, in the sitting
position, right and left rotations of the neck
resulted in increases in pressure of 85.5% and
18.2% respectively. Collectively, these findings
suggest that the cerebral venous drainage sys-
tem plays an influential role in regulating ICP.
Furthermore, they indicate that the functional
behaviour of the cerebral venous drainage sys-
tem is greatly influenced by postural changes.
It is therefore surprising that relatively little is
known about how changes in posture (e.g.
supine to upright) affect the intracranial fluid
system, particularly in healthy individuals,
who for ethical reasons are rarely studied. The
MRI work by Alperin et al.* revealed marked
changes in the behaviour of the intracranial
fluid system when healthy subjects move from
the supine to upright position. These changes
were particularly obvious in the behaviour of
the venous system, which became much less
pulsatile when upright, something that
appears to be associated with greater intracra-
nial compliance in this position.

Clinical relevance

The issue of cerebral venous drainage has
for many years been overlooked and it is only
recently that the subject has received much
attention. The mystery surrounding its appar-
ent connection with the CSF system, only
serves to highlight that relatively little is
known about the physiological mechanisms
that regulate the intracranial fluid system. In
particular, the way in which the intracranial
fluid system adapts when changing from
supine to the upright position is poorly under-
stood. However, there is evidence that
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impaired cerebral venous outflow can marked-
ly alter the dynamics of the intracranial fluid
system. A better understanding of the physiol-
ogy associated with cerebral venous outflow
may therefore be of great benefit in under-
standing the progression of neurological con-
ditions such as NPH and IIH.

Conclusions

There is growing evidence that the cerebral
venous drainage plays an influential role in
regulating the dynamics of the intracranial
fluid system. In particular, the compliance of
the cortical bridging veins appears to be criti-
cal to the behaviour of the system, with abnor-
malities at this location implicated in NPH.
The compliance associated with these vessels
appears to be functional in nature and depend-
ent on the free egress of blood out of the crani-
um via the extracranial venous drainage path-
ways. Constricted venous outflow appears to be
linked to increased CSF pulsatility in the AoS,
suggesting that inhibited venous blood flow
may be altering the compliance of the cortical
bridging veins.
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