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Abstract
It is well known that venules equipped

with valves play a critical role in regulating
blood flow. Essentially they are peristaltic
pumps that increase the efficiency of venous
blood return to the heart, thanks to the pres-
ence of valves preventing backflow. Inspired
by two recent papers, we have modeled the
venule as a vessel with valves placed at its
ends and walls animated by radial oscilla-
tions that are independent of heart pulsation
and respiratory rhythm. Differently from the
previous papers, the present model takes into
account the valves inertia allowing, for pro-
gressive closing/opening stages. The numer-
ical simulations produce a pressure pulse and
a velocity profile which agree almost per-
fectly with the experimental data of
Dongaonkar et al., eliminating the discrepan-
cies found in Farina et al., arising from the
hypothesis that valves act instantaneously.

Introduction
The phenomenon of vasomotion con-

sists in periodic oscillations of blood ves-
sels walls and it was studied for the first
time by Thomas Wharton Jones1 in 1852.
He observed spontaneous oscillations of the
venules in the batwing membrane and right-
ly concluded that its effect was to enhance
blood flow. Also Intaglietta2 pointed out the
effects of vasomotion on blood flow in
small vessels, distinguishing between the
arterioles and the venules. Gratton et al.3

made experiments on pregnant rats and they
concluded that vasomotion has many poten-
tial functions, including modulation of vas-
cular resistance. In particular, the authors
claimed that the arterioles hydraulic resist-
ance increases as the amplitude of vasomo-
tion increases and this result appears consis-
tent with experimental observations. The
whole matter of blood dynamics in the pres-
ence of vasomotion has been recently

reconsidered in Farina et al.4 and Fasano et
al.,5 where the authors made a clear distinc-
tion between the flow in the venules and in
arterioles. In a recent paper Dongaonkar et
al.6 experimenting on batwings focused on
the presence of valves in venules. Batwings
are characterized by a very thin membrane
allowing in vivo, non-invasive, nondestruc-
tive measurements with simple light
microscopy without the use of anesthesia or
surgery.

Looking at Fig. 3 of Dongaonkar et al.6
we immediately realize the oscillating
behavior of the venule walls and the
absence of retrograde flow. Moreover, such
oscillations are unrelated to heart pulsations
since their period is too long (almost 7 s)
and they act as a peristaltic pump, with
valves preventing the back-flow. Thus, the
peristaltic action results in pressure pulses
greatly enhancing the effect of the heart
generated hydraulic pressure gradient. As a
consequence the vessel resistance is consid-
erably reduced, as shown in Farina et al.4
Indeed, by preventing reflux, microvalves
turn the periodic oscillations of venules
walls into a pumping action. In the contrac-
tion phase the rear valve closes, while
expansion causes the closure of the front
valve, thus making flow unidirectional. In
valveless vessels (like arterioles) vasomo-
tion scarcely influences the net blood dis-
charge (and in a negative way in a purely
Newtonian framework5). It is frequently
believed that valves are absent in human
body veins smaller than two millimeters in
diameter and so investigations on the patho-
physiology of chronic venous diseases nor-
mally consider and evaluate only the vascu-
lar competence of large veins. On the con-
trary, reviewing literature (see, Caggiati et
al.7 and the recent book by Fasano and
Sequiera8) it turns out that the discovery of
microscopic venous valves dates almost a
hundred years ago.

The mechanisms triggering vasomotion
are discussed in a number of papers. We
refer the reader to the reviews by other
authors9-11 and to the numerous references
therein. However the focus of this paper is
not on the mechanisms that cause and con-
trol vasomotion, but rather on the conse-
quences that vasomotion has on the blood
flow in venules equipped with compliant
valves.

A mathematical model for the venular
flow recorded by Dongaonkar et al.,6 has
been formulated and studied in Farina et al.4

and Fasano et al.,5. Such a model describes
peristaltic effect arising from the combina-
tion of the walls oscillations and of the
valves action fitting the experimental data
Dongaonkar et al.6 reasonably well. The dis-
crepancy between the predicted and the

experimental vasomotion-related pressure
peaks consists in a retardation of the pres-
sure-ascending phase and in an anticipation
of the descending branch. We believe that
the underlying cause is that the time taken
by the valves to open or close was simply
ignored. Indeed, in Farina et al.4 and Fasano
et al.5 valves were modeled as massless
bodies which open/close as the pressure in
the venule becomes larger/smaller than the
one outside. In other words, valves inertia
was neglected.

The purpose of this study is to propose
a simple model, which accounts effectively
for valves inertia. The valves, indeed, are
driven by the flow in a complicated way and
their response can never be instantaneous,
due to their mass. We believe that the model
here proposed, though tentative, can be use-
ful because explains qualitatively and quan-
titatively how vasomotion affects blood
flow in venules, giving an excellent agree-
ment with the experimental data. Further,
the model is also able to reproduce the
effects of some pathologies like the partial
incontinence of the valves.

The fitting procedure has been devel-
oped with the available data by Dongaonkar
et al.,6 and its purpose is to show how the
model is able to reproduce the experiments.
The pressure data that we consider in this
paper refer to the venular flow in bat wing.
It could be interesting to compare our
results with human venules, especially with
pathological cases. However, to the best of
our knowledge, these data are not available.
Nevertheless, inserting the parameters con-
cerning human venules vasomotion (vessels
size, oscillation period and amplitude) one
could make some predictions about the
effect of this phenomenon.
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Materials and Methods
We consider a cylindric vessel whose

length is L* and whose radius oscillates with
period T* (typically T* ≈ 6 – 7 s for bats),
namely R* = R*

0R(t*), with R*
0 maximum

radius and R(t*) dimensionless periodic
function such that (1 – 2d) ≤ R(t*) ≤ 1, with
d < 0.5 [Note: all symbols with * denote
dimensional quantities.]. We remind that
vasomotion period is not related to heart
rhythm, as pointed out by Intaglietta in his
1990 paper.2

The ratio and the Reynolds

number Re are small (typically e = 2.5×10–3

and Re ≤ 10–4) and this allows writing the
flow equations in a greatly simplified form.4
Actually, the limitations of the model are
essentially linked to these two hypothesis:
creeping flow (Re << 1) and lubrication
regime (e << 1).

We remark that we consider synchro-
nous oscillations, i.e. R* = R*(t*), and not a
peristaltic progressive wave, for the follow-
ing reasons. First in Dongaonkar et al.6 there
is no information on the phase velocity (or,
equivalently, on the wavelength l*). The
authors report only the oscillations frequen-
cy and amplitude. Next the effects of the
peristaltic wavelength l* on the flow have
been analyzed by Farina et al.4 and Fusi et
al.12 In these papers three cases have been
considered: i) l* much smaller than the ves-
sel length L*; ii) l* of the same order of L*;
iii) l* much larger than L*. Case i) is
extremely disadvantageous for the flow,
resulting in a sharp increase of the vessel
hydraulic resistance. In case ii) the fit with
the experimental data6 is very poor. So, the
only interesting case turns out to be case
iii), which basically corresponds to syn-
chronous oscillations.

We also suppose that the inlet-outlet
pressure difference Dp* is known and we 

introduce being the reference 

pressure obtained from Poiseuille formula
(exploiting the data of Dongaonkar et al.,6

p*
ref = 0.37 cmH20). We indeed remark that

the flow is driven by the hydraulic pressure
gradient due to heart to which the peristaltic
pressure is superimposed. The oscillation of
the vessel walls provides an active venular
pumping thanks to the presence of compli-
ant valves (a characteristic of reciprocating
pumps), which prevent retrograde flow.

For simplicity we consider the blood to
be a Newtonian fluid whose viscosity is m*

= 3.5 mPa • s. In Cardini13 a power-law
model is consider but numerical simulations
have pointed out such a non-Newtonian
behavior does not improve the fit with the
experimental data of Dongaonkar et al.6 We

therefore conclude that the simple
Newtonian model is satisfactory for our
scope.

The dimensionless space and time vari-
ables are:

           
(1)

where x* and r* are the longitudinal and the
radial coordinate, respectively.

We also introduce the dimensionless
pressure:

The analysis developed in Farina et al.4
provides for  the differential equation:

          
(2) 

Whose solution is:

       
(3)

where A(t) and B(t) have to be determinated
using the conditions imposed at the vessel
ends. From (3) we can compute the dimen-
sionless discharge Q, getting:

(4) 

and the centerline blood longitudinal velocity:

(5)

The valves dynamics excluding inertia
(model adopted by in Farina et al.4 and
Fasano et al,5) is described by the following
two steps: 
i) the inlet valve (x = 0) closes when the

pressure caused by the vessel contraction
exceeds the imposed one, i.e. Dp. This
fact prevents the back-flow, forcing the
discharge Q to vanish when p|x=0 > Dp.

ii) the outlet valve (x = 1) closes when
pressure falls below the outlet one

(which we have set equal to 0).
These conditions allow to find A(t) and

B(t) and eventually, exploiting (3) and (4),
to get an explicit formula for pressure and
discharge. In particular, conditions 1 and 2
are graphically represented by the step
functions (solid lines in Figure 1 parallel to
axes).

However, in this way the valves are
modeled as mass-less devices which
open/close instantaneously as the pressure
in the vessel becomes larger/smaller than
the one outside. Such an approach, though
providing a significant agreement with the
experiments, is now improved by somehow
taking into account the valves inertia, which
induces a delay in their action. An effective
way of representing this delay is to smooth
the original boundary conditions 1 and 2,
replacing them with:

          
(6) 

and

          
(7) 

n, m being two parameters characterizing
the opening/closing speed. Thus, once

Figure 1. Boundary conditions at x = 0 and
x = 1 (pressure gradient vs pressure). The
solid lines represent the instantaneous
open/close conditions, while the dotted
lines are their smoothed version.
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given the radius oscillation profile R(t), we
have to couple (6) and (7) with (3), in order
to numerically determine A(t) and B(t).
Then formulas (4) and (5) will provide the
explicit expression for the respective quan-
tities.

We remark that an accurate description
of valves dynamics would require quantita-
tive information about their mechanical
properties, such as their mass, shape, stiff-
ness in addition to their interaction with
flowing blood. As stated earlier, such
extremely complex dynamics has been
bypassed in previous papers,4,5 by assuming
that valves have a simple on/off behavior
(i.e. they open and close immediately when
requested). Since the actual study of the
valves dynamics is far beyond our possibil-
ity of investigation, we came to the compro-
mise of mimicking the implied delay by
introducing some progressive way in the
opening and closing, which in the model
amounts in replacing the step functions (the
solid lines in Figure 1) with smooth func-
tions (the dotted lines in Figure 1) charac-
terized by the parameters m and n. Though
they do not have a precise physical mean-
ing, they allow introducing in the model the
effects of valves reduced efficiency due to
their inertia and, in extreme cases, to patho-
logical reasons.

Results and Discussion
Omitting mathematical technicalities,

we illustrate the main results (the readers
are referred to Cardini13 where mathemati-
cal details are illustrated). We select:

R(t)=2.37t3 (1 – t3)3 + 0.75, repeated period-
ically with period T = 1,                       (8)

and take R*
0 = 70 mm, T= 6 sec, fitting very

well the oscillation of R* shown in Fig. 3 of
Dongaonkar et al.6 Next, we exploit equa-
tions (6) and (7) to get the parameters A(t)
and B(t) appearing in (3) and (5).

The dashed line in Figure 2 is the pres-
sure pulse produced by the present model
(with n = 100 and m =50), the continuous
line is the one produced by the previous
illustrated model5 and the asterisks are the
experimental data.6

Clearly, the model presented here
matches the experimental data6 better than
which disregarded valves inertia, confirm-
ing at the same time that the two-valve
model is reliable and that valves inertia
have a substantial influence.

Moreover, the model predicts that, dur-
ing a certain time, both valves are open.
This occurs when the lumen diameter is

close to its maximum or minimum. In this
stage, that we can call inert phase, both
valves are open and the blood flow is sim-
ply driven by the pressure difference gener-
ated by the heart.

We observe further that the model can
be used for making predictions about patho-
logical cases as shown in Figure 3. For
instance, in the case of varicose the vaso-
motion ceases or is reduced owing to the
wall relaxation, as in Figure 3A where the
oscillation amplitude is reduced by 30%.
The reduction of vasomotion entails in turn
an appreciable reduction of pumping action,
Figure 3B, associated to the spontaneous
oscillation of the venous walls.

Valves incontinence can be simulated
by a partial opening/closure, which can be
effectively represented by further slowing
the valves action. In Figure 4 we have plot-
ted the inlet discharge corresponding to effi-
cient valves (continuous line) and inconti-
nent valves (dashed line). In this case back
flow (namely negative discharge) occurs
during the compression stage and the net
discharge practically vanishes. The inlet
valve does not sustain the pressure generat-
ed by the contraction of the vessel wall and
this generates the backflow (which is absent
in the case of healthy valves).

Conclusions
As shown in Chen et al.,14 the role of the

valves is not only to prevent reflux but also
to increase the out flow. And also the insuffi-
ciency of the microvalves determines both

micro reflux (see, for instance, a recent paper
by Govind et al.15), and reduction of the
venular outflow. The model agrees qualita-
tively with these results. For instance, the
inlet discharge of valves whose opening/clo-
sure is reduced by 70%, decreases by about
95% with respect to the healthy case.

Figure 2. Vasomotion-induced pressure
pulse. Comparison between the experi-
mental data of Dongaonkar et al.6 (aster-
isks), the model illustrated in Fasano et al.5
(solid line), and the model developed in
this paper (dashed line) with n = 100 and
m = 50. In order to better appreciate the
differences two periods are shown.

Figure 3. Comparison between healthy and
varicose vasomotion. A) Radius oscillation
in healthy condition (continuous line) and
in the presence of a varicose pathology
(dashed line). B) Pressure pulse in healthy
condition (continuous line) and in the
presence of a varicose pathology (dashed
line).

Figure 4. Inlet discharge in case of efficient
valves (continuous line) and incontinent
valves (dashed line) whose opening/closure
is reduced by 70%. The net discharge is
reduced by about 95% compared to the
healthy valve case.
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Possible future developments could
concern a more accurate investigation of the
energetic benefits that vasomotion brings to
the circulatory system. For example, which
additional effort is required to the heart in
case of pathology affecting valves? This
could give important qualitative informa-
tion on the cardiac effects of venous dis-
eases.
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