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Appendix 

Here we have extended the Müller-Toro mathematical model.1,2 This is a global multiscale 

model that places particularly emphasis on the venous system; it includes a 1D description of 

all major blood vessels and 0D compartmental models for the microcirculation, the heart, the 

pulmonary circulation and the CSF compartment. 

 

1D Equations 

For major vessels the 1D averaged equations read: 

 

𝜕!𝐴 + 𝜕!𝑞 = 0          (1) 

 

𝜕!  𝑞 + 𝜕!   
!!

!
+ !

!
𝜕!𝑝 = −𝑓        (2) 

 

where 𝑥  is the axial coordinate, 𝑡  is time, 𝐴   =   𝐴(𝑥, 𝑡)  is the cross-sectional area, 𝑞   =

  𝑞(𝑥, 𝑡) is the cross-sectional area averaged flow rate, 𝑝   =   𝑝(𝑥, 𝑡) is the averaged internal 

pressure, 𝜌 is the, constant, blood density and 𝑓(𝑥, 𝑡) is friction force per unit length, with 

𝑓   =   8𝜋µμ𝑢/𝜌, where µμ is blood kinematic viscosity and 𝑢 is velocity. Note that 𝑞(𝑥, 𝑡)   =

  𝐴(𝑥, 𝑡)𝑢(𝑥, 𝑡). To close the system of equations we introduce the tube law: 

 

𝑝 𝑥, 𝑡 = 𝑝!(𝑥, 𝑡)+ 𝐾(𝑥)𝜑( 𝐴 𝑥, 𝑡 ,𝐴! 𝑥 + 𝑃!.       (3) 

 

Here 𝑝!(𝑥, 𝑡) is the external pressure; 𝐴! 𝑥  is the equilibrium cross-sectional area; 𝑃! is the 

reference pressure when A = 𝐴! and 𝑢(𝑥, 𝑡)   =   0; 𝐾(𝑥) is a positive function depending on 

the geometrical and mechanical properties of the blood vessels. Both 𝐾(𝑥) and the function 

𝜑 assume different expressions to differentiate between arteries and veins. For further details 
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on the tube laws for arteries and veins see 1,2 and Appendix Table 1.3-6 The numerical 

solution of the system of equations is computed with a high-order ADER7 numerical scheme. 

For background on ADER see Chaps. 19 and 20 of 8. The method consists of a non-linear 

spatial reconstruction step followed by the solution of the Generalized Riemann Problem9 at 

each cell interface to compute the numerical flux. Here we use Dumbser-Enaux-Toro solver10 

to solve this problem and the Dumbser-Osher-Toro Riemann solver11 to solve the classical 

Riemann problem, also needed to solve the Generalized Riemann Problem. 

 

0D Equations 

In this paper we have added 0D compartments to account for the inner ear microcirculation, 

associated to the 1D vessels introduced in the model. These models are obtained by firstly 

linearizing the 1D system about the reference state (𝐴   =   𝐴!,𝑝   =   0, 𝑞   =   0) and then 

integrating over the length of the vessel of interest leading to the ODEs: 

 

𝐶 !"
!"
+ 𝑄 − 𝑄!" = 0,           (4) 

 

𝐿 !"
!"
+ 𝑅𝑄 + 𝑃!"# − 𝑃 = 0,          (5) 

 

where 𝑃(𝑡),𝑄(𝑡) are the state variables of the lumped compartment, i.e. pressure and flow 

rate, and 𝑃!"#  ,𝑄!" are variables related to adjacent compartments or obtained by the imposed 

boundary conditions. Moreover, the coefficient 𝑅, 𝐿,𝐶 are specific to the compartment of 

interest, corresponding to the viscous resistance to flow, blood inertia and wall compliance, 

respectively. These coefficients are defined as follows: 
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𝑅 = 𝑙   !
!!!

!
!
 , 𝐿 = 𝑙 !

!!
 , 𝐶 = 𝑙   !!

!!!!
 ,         (6) 

 

where 𝑙 is the vessel length, µμ is the blood viscosity and 𝜌 the blood density. Since in our 

compartmental models are used for the microcirculation, we also take into account the 

number of vessels (that is the number of arterioles per artery, the number of capillaries per 

arteriole and the number of venules per capillary) in order to correctly compute the 

coefficient of every compartment, since coefficients have been calculated considering a 

system of vessels in parallel.12 The configuration of every compartment is as represented in 

Appendix Figure 1, and describes the arteriolar, the capillar or the venular district. For details 

on the approach see 2. In the present work, two new 0D models have been added to 

investigate the inner ear microvasculature; the new compartments connect the anterior 

inferior cerebellar arteries to the LABVs and to the VCAQs. Their configuration is 

represented in Appendix Figure 2: two different capillary networks have been defined in 

order to distinguish the cochlear microcirculation from the vestibular one. Parameters for all 

the compartments in the model are given in Appendix Table 2.13,14 

 

 

Appendix Figure 1. Single lumped compartment: the combination of several compartments 
constitutes a 0D model for the microcirculation. 
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Appendix Figure 2. Right (H) and left (I) lumped compartments for the inner ear circulation. 
This configuration has been used in order to distinguish the cochlear capillaries (vessels 276, 
279) from the vestibular capillaries (vessels 277, 280). For details on vessel numbering see 1,2. 
 
 
 
 
Appendix Table 1. Geometrical properties of the vessels modified or introduced into the original 
Müller-Toro model1,2 to carry the present study.  
 

No.  Vessel name 𝑳[cm] 𝒓𝟎[cm] 𝒓𝟏[cm]  𝒄𝟎[cm]  Loc  Ref 
56 Basilar art. I 0.960 0.1620 0.1620 9.33 1 3 

274 Basilar art. II 1.930 0.1620 0.1620 9.33 1 3 

275 R. ant. inf. cerebellar art. 1.400 0.0400 0.0650 23.77 1 4 

278 L. ant. inf. cerebellar art. 1.400 0.0400 0.0650 23.77 1 4 

276 R. vein of the cochlear aq. I 0.645 0.0100 0.0100 3.00 9 5 

277 R. labyrinthine vein I 0.433 0.0375 0.0375 2.99 9 6 

279 L. vein of the cochlear aq. I 0.645 0.0100 0.0100 3.00 9 5 

280 L. labyrinthine vein I 0.433 0.0375 0.0375 2.99 9 6 

281 R. vein of the cochlear aq. II 0.645 0.0100 0.0100 3.00 9 5 

282 R. labyrinthine vein II 0.433 0.0375 0.0375 2.99 9 6 

283 L. vein of the cochlear aq. II 0.645 0.0100 0.0100 3.00 9 5 

284 L. labyrinthine vein II 0.433 0.0375 0.0375 2.99 9 6 

 
L: length; r! reference inlet radius; r!: reference outlet radius; c!: wave speed in the reference configuration; Loc: location in 
the body; Ref: bibliographic source. 
 
 
 
Appendix Table 2. Parameters for the 0D compartments included in the model. The first column  
shows the indexes of the (parent) artery and the (daughter) veins.  The second column shows the 
resistance of distal arteries 𝐑𝐝𝐚 [mmHg s mL−1] while the remaining columns give resistance 𝐑 
[mmHg s mL−1],  inductance 𝐋 [mmHg s2 mL−1]  and capacitance 𝐂  [mmHg−1 mL] for arterioles,  
capillaries and venules respectively. Capacitances were computed as C2 = 0.1C1, C3 = 3C1,
as in 13. Parameters for the new compartments H and I were obtained from data in 12,14. 
 

Parent/daughter 
vessel 𝑹𝒅𝒂 𝑹𝒂𝒍 𝑳𝒂𝒍 𝑪𝒂𝒍 𝑹𝒄𝒑 𝑳𝒄𝒑 𝑪𝒄𝒑 𝑹𝒗𝒏 𝑳𝒗𝒏 𝑪𝒗𝒏 

Lumped Model H           
275 4.700*10 7.153 4.735*10–4 3.738*10–5 - - - - - - 
Common param. - - - - - - 3.738*10–6 - - - 
276 - - - - 3.260 1.365*10–5 - 4.828 1.420*10–4 1.218*10–4 

277 - - - - 3.260 1.365*10–5 - 4.828 1.420*10–4 1.218*10–4 
Lumped Model I           
278 4.700*10 7.153 4.735*10–4 3.738*10–5 - - - - - - 
Common param. - - - - - - 3.738*10–6 - - - 
279 - - - - 3.260 1.365*10–5 - 4.828 1.420*10–4 1.218*10–4 

280 - - - - 3.260 1.365*10–5 - 4.828 1.420*10–4 1.218*10–4 
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