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Abstract
Laron syndrome (LS) is a rare genetic

disorder identified in the 1950s by
Professor Zvi Laron. LS results from muta-
tion of the growth hormone receptor (GH-
R) gene, leading to congenital insulin-like
growth factor-1 (IGF1) deficiency and
dwarfism. Recent epidemiological studies
have shown that LS patients do not develop
cancer, emphasizing the crucial role of the
IGF1 axis in cancer biology. Genome-wide
profiling of LS patients conducted in our
laboratory led to the identification of genes
and signaling pathways that are over- or
under-represented in LS compared to
healthy controls of the same age range and
ethnic group. Differentially expressed genes
may be responsible for the association
between lifetime low IGF1 values and pro-
tection from cancer. This experiment of
nature may provide invaluable information
that might translate into novel therapeutic
approaches in modern oncology.

Introduction
The processes of growth, differentiation

and cell death are tightly regulated by mul-
tiple cellular and secreted factors that, in a
highly orchestrated manner, regulate the
time- and tissue-specific expression of a
wide array of genes. Disruption of this
genetic program may lead to a pathological
phenotype, including tumor formation. The
vast amount of information that has been
generated in recent years following the elu-
cidation of the human genome, combined

with the almost daily integration of new
data emanating from state-of-the-art tech-
nologies, are changing our notions and dog-
mas about biological processes. In the area
of cancer research, in particular, genomic
and proteomic approaches, among other
sophisticated platforms, are having a huge
impact on our understanding of both basic
and clinical questions. Biological processes
are now amenable for integrative examina-
tion at multiple levels of analysis, ranging
from molecular to organismal levels. The
present review article focuses on the growth
hormone (GH)/insulin-like growth factor-1
(IGF1) axis, an important endocrine net-
work with key roles in physiological and
pathological states.

The growth hormone-insulin-like
growth factor-1 endocrine axis

The GH/IGF1 axis has a fundamental
role in growth and development throughout
life.1 As originally postulated by Salmon
and Daughaday in the mid-1950s, GH
actions are mediated by a liver-produced
peptide initially termed somatomedin and,
subsequently, IGF1.2 IGF1 is also produced
by extra-hepatic tissues and circulates as a
ternary complex with IGF-binding protein-
3 (IGFBP3) and an acid-labile subunit
(ALS).3,4 At the cellular level, IGF1 func-
tions as a progression factor that is required
by the cell to traverse the cell cycle.

IGF1 and closely related IGF2 ligands
activate a common receptor, the IGF-1
receptor (IGF1R), which signals mitogenic,
antiapoptotic and pro-survival activities5-8
(Figure 1). The IGF1R is an heterotetramer-
ic cell-surface tyrosine kinase receptor cou-
pled to several intracellular second messen-
ger pathways, including the ras-raf-MAPK
and PI3K signaling cascades.9 IGF1R is
vital for cell survival, as illustrated by the
lethal phenotype of mice in which the
IGF1R gene was disrupted by homologous
recombination.10 IGF1R is evolutionarily
related to the insulin receptor (InsR) and is
regarded as a key player in malignancy.
Transformed cells display augmented num-
bers of IGF1R on their cell surface as well
as increased levels of IGF1R mRNA, sug-
gesting that up-regulation of the IGF1R
gene constitutes a common paradigm in
most types of cancer.11,12 The role of the
InsR in cancer biology is still a controver-
sial topic, albeit a number of studies have
established that the InsR-A isoform medi-
ates mitogenic actions in breast and other
cancers.13

Congenital insulin-like growth
factor-1 deficiencies: the Laron
syndrome case

Growth retardation in infants is multi-
factorial, although a large portion of the
cases remains idiopathic because no genetic
(or other) defect could be identified.14,15
Prenatal IGF1 expression is GH-indepen-
dent, though it becomes reliant on GH
secretion shortly before birth and remains
GH-dependent during postnatal life.
Congenital IGF1 deficiency is characterized
by low serum IGF1 but normal to elevated
GH production. These conditions may
result from: i) GH releasing hormone-
receptor (GHRH-R) defect; ii) GH gene
deletion (isolated GH deficiency, IGHD);
iii) GH receptor (GH-R) gene deficiency
(Laron syndrome, LS); and iv) IGF1 gene
deletion. Additional conditions leading to
congenital IGF1 deficiency are defects of
post-GH-R signaling (e.g., STAT5b defects)
and ALS mutations.16-19

Laron syndrome is a type of dwarfism
caused by molecular defects (usually dele-
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tions or mutations) of the GH-R gene, or
post-receptor pathways, leading to congeni-
tal IGF1 deficiency.20 This genetic (autoso-
mal recessive with full penetrance) entity
was identified by Prof. Zvi Laron in the late
1950s in three siblings of Yemenite origin
and reported in 1966.21 The typical features
of classical LS are short stature (-4 to -10
SDS below the median normal height), typ-
ical face, obesity, high basal serum GH and
low IGF1, unresponsive to the administra-
tion of exogenous GH.22 The recognition
that an inherited mutant GH-R gene is the
etiological factor behind LS was reported in
1984.23,24 Several GH-R defects were identi-
fied, including exon deletions and non-
sense, frame shift, and missense muta-
tions.25 The majority of the mutations are in
the extracellular domain of the receptor
while a number of mutations were mapped
to the transmembrane and cytoplasmic
domains26-28 (Figure 2).

Laron syndrome patients are
protected from cancer develop-
ment

Epidemiological studies have indicated
that individuals with increased circulating
IGF1 levels, as well as those with insulin
resistance and obesity, are at an increased
risk for multiple types of cancer.29-33
Nevertheless, it is not clear whether IGF1
plays, by endocrine, paracrine or autocrine
mechanisms, a role in the etiology or only in
the progression of neoplasms. Of basic and
translational importance, it is relevant to
explore whether individuals with reduced
serum IGF1 values have a low cancer inci-
dence.

In recent epidemiological studies
including 538 congenital IGF1 deficient
patients [230 LS patients, 116 IGHD
patients, 79 patients with GHRH-R defects,
and 113 patients with congenital multiple
pituitary hormone deficiency (cMPHD)]
and 752 of their first-degree family mem-
bers, prevalence of malignancy was
assessed by responding to a question-
naire.34,35 None of the 230 LS patients (up to
the age of 85) included in this cohort devel-
oped cancer and only one out of the 116
IGHD patients had a tumor (Table 1).
Among 218 first-degree family members

(mostly heterozygotes) 18 cases of cancer
were reported (8.3%). In addition, five
malignancies were reported among 86 sib-
lings (5.8%). It is important to emphasize
that despite the fact that the total number of
patients in these studies was small, these
differences were highly significant in statis-
tical terms. Furthermore, the observations
regarding cancer protection are supported
by animal experiments using the GH-
R/GH-binding protein (BP) KO (Laron)
mouse model.36

The finding that congenital IGF1 defi-
cient patients do not develop cancer is of
major clinical and scientific value. The
interpretation of epidemiological data is

consistent with the notion that the GH/IGF1
axis has a fundamental role in predisposing
progenitor and somatic cells to malignant
transformation. Conversely, congenital
IGF1 deficiency might confer protection
against future development of cancer. We
envision a scenario in which life-long lack
of exposure to IGF1 in LS patients activates
apoptotic, autophagic and cancer-protecting
pathways at the organism level. Studies
aimed at identifying some of these protec-
tive mechanisms will be described in the
next section. Of notice, similar results con-
cerning cancer protection were reported by
Guevara Aguirre and collaborators in an
Ecuadorian cohort of LS patients.37

                             Review

Table 1. Prevalence of malignancy in Laron syndrome patients. 

            Laron syndrome patients                                 First degree family members                                   Siblings only

N                            Malignancies                    %                                N                   Malignancies                %                                  N         Malignancies               %
230                                    0                              0.0                             218                           18                          8.3                                 86                    5                         5.8

Figure 1. The growth hormone (GH)/insulin-like growth factor-1 (IGF1) signaling path-
way. IGF1 and IGF2 bind to the extracellular domain of the IGF1 receptor (IGF1R) and
induce autophosphorylation of its tyrosine kinase (TK) domain. The bioavailability of the
ligands is controlled by a family of IGF-binding proteins (IGFBP). IGFBP3, the most
abundant BP in serum, circulates as a ternary complex with the ligand and an acid-labile
subunit (ALS). Inset: activation of liver GH-receptor (GH-R) by GH leads to biosynthesis
of IGF1, IGFBP3 and ALS. The GH-R gene is mutated in Laron syndrome.
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Genome-wide profiling of Laron
syndrome patients

In order to identify differentially
expressed genes that might be linked to can-
cer protection in LS patients, our laboratory
has recently conducted a genome-wide pro-
filing based on our collection at the National
Laboratory for the Genetics of Israeli
Populations (Tel Aviv University, Israel).38
Specifically, RNA was obtained from
Epstein-Bar virus-immortalized lymphoblas-
toids derived from four female LS patients
and four controls of the same age range (LS,
44.25 ± 6.08 yr; controls, 51.75 ± 11.3 yr;
mean ± SD; P value=0.29) and same ethnic
origin (Iraq, Iran, Yemen). One-way ANOVA
was performed using Partek Genomics Suite
to create a list of differentially expressed
genes. A cluster analysis of differentially
expressed genes is depicted in Figure 3A.
Thirty-nine annotated genes that were differ-
entially expressed in LS compared to healthy
controls were identified (with a P value of
<0.05 and fold-change difference cutoff
>|2|). As shown in Figure 3B, Principal
Component Analysis (PCA) revealed a good
discrimination between experimental groups.
Bioinformatic analyses aimed to identify
genes and pathways that are under- or over-
represented in LS are presented in the next
section.

Functional analyses
Functional analyses were conducted to

identify co-expressed genes sharing the
same pathways. Analyses provide evidence
for a number of shared pathways, including
cell adhesion, G-protein signaling pathway,
cell migration and motility, immune
response, Jak-STAT signaling, apoptosis,
metabolic pathways, etc. (Figure 3C). This
differential expression may, potentially,
explain the evasion of LS patients from can-
cer. Of relevance, bioinformatic analyses
detected markedly reduced levels of gene
transcripts associated with oncogenic trans-
formation and cell cycle progression. These
genes include, among others, cyclin A1,
cyclin D1, serpin B2, versican and zinc fin-
ger protein Sp1. Taken together, data are
consistent with the concept that life-long
lack of exposure to circulating IGF1 in LS
patients might lead to downregulation of
genes with a positive impact on prolifera-
tion and mitogenesis. It is reasonable to
assume that IGF1 exposure activates epige-
netic and transcription pathways critical for
gene expression. Lack of exposure to phys-
iological IGF1 levels in LS patients abro-

gates these signaling pathways, with impor-
tant consequences in terms of cancer avoid-
ance.

Identification of novel metabolic
genes in Laron syndrome
patients

Of particular interest, genome-wide
profiling revealed enhanced expression of
genes associated with protection from toxic
xenobiotic substances and metabolites in
LS-derived lymphoblastoid cells. These
genes include, among others: i) uridine
diphosphate (UDP) glycosyl transferase
gene family (UGT2B15, UGT2B17; fold-
change=12.4); ii) ZYG-11 family member
A (ZYG11A; fold change=4.2); iii) riboso-
mal modification protein RimK family

member B (RIMKLB; fold change=3.7);
and iv) thioredoxin-interacting protein
(TXNIP; fold-change=2.35). These genes
have not been previously linked to the
IGF1-insulin signaling pathway.

Uridine diphosphate-glycosyl trans-
ferase gene family

The UDP-glycosyl transferase gene
family (UDPGT) plays a major role in the
conjugation and subsequent elimination of
potentially toxic xenobiotic and endoge-
nous compounds. This protein displays
activity towards several classes of xenobiot-
ic substrates, including simple phenolic
compounds, flavonoids, antraquinones and
certain drugs and their hydroxylated
metabolites. Genomic analyses provided
evidence that the levels of
UGT2B15/UGT2B17 mRNAs were ~12-
fold higher in LS than in control cells.
These results were validated by qPCR. Data
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Figure 2. Schematic representation of the growth hormone (GH)/insulin-like growth fac-
tor-1 (IGF1) axis in Laron syndrome. Hypophyseal-derived GH stimulates IGF1 produc-
tion by the liver, with ensuing bone elongation and longitudinal growth (left panel). GH-
receptor (GH-R) mutations in Laron syndrome lead to congenital IGF1 deficiency, usual-
ly linked to poor growth. In addition, abrogation of IGF1 production leads to inadequate
negative feedback at the pituitary gland, leading to high circulating GH levels.
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is consistent with the finding that survival
of LS cells following oxidative damage was
several-fold higher than controls.
Combined, results imply that increased
UGT2B15/UGT2B17 levels in LS might
confer upon these cells a protective effect
against oxidative and, potentially, genotoxic
damage. If substantiated by functional
assays, this finding may provide valuable
insight into the physiological basis for
reduced cancer in LS.

ZYG-11 family member A
ZYG-11 family member A (ZYG11A)

acts as a target recruitment in an E3 ubiqui-
tin ligase complex. The ZYG11A protein is
composed of 759 amino acids, includes a
leucine-rich repeat and has been postulated
to be involved in the ubiquitin-like (Ubl)

conjugation pathway. Over-representation
of ZYG11A in LS (4.2-fold change) may
lead to hyper activation of the Ubl conjuga-
tion pathway, with ensuing ubiquitination
and degradation of toxic waste compounds.

Ribosomal modification protein
RimK family member B

Ribosomal modification protein RimK
family member B (RIMKLB) is involved in
cellular protein modification and metabolic
processes. It is mainly localized in the cyto-
plasm, where it displays catalytic and ligase
activity. RIMKLB exhibits also metal ion
binding activity. Overexpression of this
gene in LS (3.7-fold change) may be linked
to more efficient catalytic processes, and
might be linked to autophagic and apoptotic
mechanisms.

Thioredoxin-interacting protein
Thioredoxin-interacting protein

(TXNIP) acts as an oxidative stress media-
tor by inhibiting thioredoxin activity or by
limiting its bioactivity.39 TXNIP inhibits the
proteosomal degradation of DDIT4 and,
thereby, contributes to the inhibition of the
mTOR complex. TXNIP belongs to the
arrestin family and is downregulated in
response to oxidative stress. TXNIP has
also been reported to function as a tumor
suppressor gene that is commonly silenced
by genetic or epigenetic mechanisms in
cancer cells.40 As mentioned above, genome
wide analyses demonstrated that the TXNIP
gene was markedly upregulated in LS
patients in comparison to healthy control
subjects. Considering the fact that IGF1 is
upregulated in most types of cancer, we

                             Review

Figure 3. Genome-wide profiling of Laron syndrome (LS) patients. A) Cluster analysis of differentially expressed genes in lymphoblas-
toids derived from LS patients and healthy controls of the same age range and ethnic origin. The figure depicts a cluster of 39 differen-
tially expressed genes (FC>2 or < than −2 and P<0.05). Up-regulated genes are shown in red, and down-regulated genes are shown in
blue (FC, fold change). B) Principal component analysis (PCA) display of four LS and three control arrays used in the experiment. Blue
circles: LS patients; red circles: controls. PCA revealed a good discrimination between both experimental groups. C) Pie chart of gene
functions. The sections represent the percentage of genes associated with each function.
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hypothesize that the TXNIP gene may be
under inhibitory regulation by IGF1.
TXNIP, in turn, may act by protecting LS
patients from cancer.

Conclusions
The finding that congenital IGF1 defi-

cient patients do not develop cancer (up to
the age of 85) is of an exceptional clinical
and scientific value. The interpretation of
epidemiological data is consistent with the
notion that homozygous congenital IGF1
deficiency, or deficiency in early childhood,
may confer protection against future devel-
opment of cancer. This experiment of nature
emphasizes the central role of the IGF1 hor-
monal axis in cancer and justifies the ration-
al use of available post-genomic technolo-
gies in order to elucidate in an unbiased
fashion the molecular basis that underlies
the evasion of LS patients from cancer. The
studies described in this Translational
Medicine Reports review identified mecha-
nisms and factors responsible for the associ-
ation between lifetime low IGF1 levels and
protection from cancer.

The results of genome-wide profiling
described here shed light on potential genet-
ic changes associated with evasion of con-
genital IGF1 deficient patients from malig-
nant transformation and may have a major
translational impact in oncology. In summa-
ry, by mining genomic data from LS
patients, a rare condition associated with
cancer protection, we might be able to gen-
erate clinically relevant novel information
and to translate this information into new
prophylactic and anticancer tools in oncolo-
gy. The analyses described here emphasize
the power of post-genomic platforms in
modern medical research.
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