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Abstract
A major issue in the research for new

anticancer therapeutics is represented by
the low number of new compounds
approved for clinical use in comparison to
the good success rate reported in preclini-
cal studies. This high attrition rate could be
attributed to many factors including the
unsatisfactory predictive value of experi-
ments performed in animals. To this pur-
pose, general opinions suggest that clas-
sical models as murine tumors and
xenografts do not mimic the complexity of
human cancer diseases and that the use and
integration of different relevant mouse
models could improve the efficiency of the
drug development process. In this review,
we overview the present state of research in
the field of mouse models for cancer and
describe the advantages and limitations of
the different models. Finally, strategies for
improving the predictive value of animal
experiments will be also discussed.

Introduction
Animal research has played an impor-

tant role in the advances of medical sci-
ence in the 20th century providing invalu-
able insights in the pathogenesis of most
diseases and in pharmacological research.
In particular, the discovery and the devel-
opment of the top 20 prescribed essential
drugs including the nonsteroidal anti-
inflammatory Aspirin, Paracetamol used
for pain relief and reducing fever or
Metformin the antidiabetic drug, were all
made possible by the contribution of ani-
mal experiments. A paradigmatic example
of this is diabetes research. There is no
doubt that patients have benefited from the
use of animal models in the discovery of
insulin and other treatments for the differ-
ent types of this pathology.1 Nevertheless,
the power of animal experiments in predict-

ing the clinical outcome remains particular-
ly controversial. One of the major concerns,
despite the rate of successful preclinical
experiments, is that the percentage of
authorized agents is very low. In fact, 85%
of early clinical trials for novel drugs fail
and of those that survive through to phase
III, only half are eventually approved for
clinical use.2 To this purpose, the largest
proportion of these failures occurs in trials
for cancer where only 5% of agents having
anticancer activity in preclinical develop-
ment are approved. As a result an
impressive

number of very promising preclinical
studies requiring much effort in time and
money and loss of animal lives did not
translate from the bench to the bedside.3
This strong discrepancy between preclini-
cal efficacy and clinical response could be
attributed to numerous factors such as the
complexity of cancer disease and the
need of integrating biomarker response to
improve patient selection in clinical tri-
als for cancer precision medicine.4

Besides these important issues, animal
modeling undoubtedly represents a major
challenge in improving the translation effi-
ciency. The most frequently used tool in
preclinical anticancer drug studies is in
vitro studies carried out on established
human cell lines combined with implanti-
ng the same cells under the skin or intra-
muscularly in immunocompromised mice.
While this strategy is valid as an indicator
of possible clinical activity and is able to
identify a candidate drug evaluated for
having scientific merit in justifying further
development, the predictive value for clin-
ical outcome is limited.5 In fact, a number
of features associated with their use must
be acknowledged, such as: i) the blood sup-
ply and neovascularization is provided by
the host and is derived from murine derived
stroma cells; ii) tumors are implanted in a
tissue compartment different from the
original site; iii) these models do not reca-
pitulate the heterogeneity of tumors in
patients; iv) metastases are not very com-
mon; v) the lack of a fully functioning
immune system. Unfortunately, at this
moment no single mouse cancer model
capturing the different aspects of the
human disease and predictive of the clini-
cal outcome, exists. On the contrary, there
are a number of advanced preclinical mod-
els, which should be utilized and integrated
during specific stages of the development
process following a well-defined aim of the
research, thus helping to improve our abili-
ty to translate preclinical data into clinical
success.6

Patient derived xenografts 
Patient derived xenografts (PDXs) are

obtained by the implantation of fresh
human tumor fragments following a small
incision made in the subcutis of immuno-
suppressed mice, usually in SCID, NOD-
SCID or NOD-SCID NOD-SCID
IL2RGamma null (NSG) mice.7 Tumors
are maintained by passaging fragments
directly from mouse to mouse and then
expanded for the evaluation of anticancer
efficacy of treatments. Usually the time for
engraftment is between 2 and 4 months and
failure of engraftment should not be ascer-
tained until at least 6 months and beyond.8

PDXs from most tumor types have been
successfully established for Non-Small
Cell Lung Cancer,9 breast cancer,10

melanoma,11 head and neck tumors,12

metastatic colon cancer,13 bladder cancer14

and ovarian cancer.15 One of the main fea-
tures of PDX models is the maintenance of
the cellular and histological structure of the
original tumour including critical stromal
elements, which provide sustenance under
periods of extensive growth.8 Moreover,
cytogenetic analysis of tumors from PDXs
revealed strong preservation of the overall
genomic and gene expression profile of the
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corresponding patient tumours.8,10,16

Interestingly, in regards to the predictive
value of PDXs for clinical outcome, sever-
al studies have demonstrated a concordance
between the patient response to chemother-
apy and PDXs of the same tumor histotype.
For example, human breast cancer PDXs
responded to Trastuzumab-based combi-
nation similarly to patients17 and colon-
rectal cancer PDXs mimicked the sensi-
tivity/resistance to Cetuximab of
patients.13

These results demonstrated that PDXs
represent a powerful experimental tool for
the development of anticancer therapeutics
which could help us to identify the most
effective therapy for the single cancer of a
patient or subgroup of patients. In this con-
text, one interesting idea may be to use a
PDX as an avatar model, by treating
PDXs obtained from a patient enrolled in a
clinical trial with the same therapy adminis-
tered to the patient, thus permitting to iden-
tify biomarkers of sensitivity or resistance
to treatments.

Alternatively, as reported by Misale
et al.,18 PDXs could be useful in selecting
effective therapeutic strategies for second-
line treatment. In fact, these authors
demonstrated in PDXs derived from
patients eliciting resistance to anti-EGFR
inhibitors, that a dual blockade of EGFR
and MEK with Cetuximab/Pimasertib com-
bination induced a complete response in
mice, thus tumours remained undetectable
for more than six months. In this context,
Bousquet et al.,19showed that PDXs from a
patient with an invasive triple-negative
breast carcinoma which elicited a disease
relapse after chemotherapy and radiation,
were sensitive to Paclitaxel plus Cetuximab
therapy. Following these results in PDXs,
the patient was treated with Paclitaxel
plus Cetuximab as second-line treatment
and after 3 months almost a complete meta-
bolic response was observed associated
with a time to progression longer than pre-
vious lines of treatment.

Orthotopic and dissemination
disease model

One major drawback of classical
xenografts and PDXs is that cells or tissue
fragments are implanted subcutis (s.c.) or
intramuscular (i.m.) but these in general do
not correspond to the primary site of human
cancer. Moreover, stromal and micro envi-
ronmental spatial and paracrine interac-
tions with host non-cancerous cells and
tissues which have a key role in modulat-
ing tumor drug sensitivity, are absent.20 At

the same time, after s.c. or i.m implantation,
tumours fail to progress or to metastasize
and therefore do not retain all the patterns
of the disease course observed in patients.
To address this issue, orthotopic models of
cancer have been established over the last
two decades by implanting cell lines and
more recently tumor fragments through
developing the so-called patient-derived
orthotopic xenografts (PDOXs). The
Hoffman and Fidler groups were pioneers
in this research area showing that the activ-
ity of chemotherapeutics, observed in syn-
geneic and immune-compromised ortho-
topic models, better reflect the clinical
activity of drugs such as Cisplatin,
Mitomycin C and Doxorubicin than
ectopic models.21,22 Based on the ability of
orthotopic models to reconstitute the tumor
microenviroment and reproduce malignant
progression, in terms of localized and distal
metastatic spread of the primary tumor,
they represent a great opportunity to devel-
op new drugs able to target specific mole-
cules involved in these processes.23,24 One
major limitation of the orthotopic models
is that the cell lines are artificially select-
ed from the original tumors which have
adapted to growth outside the natural
tumor microenvironment, resulting in
genetic changes that are distinct from those
imposed on tumors in patients. Moreover,
the inter- and intra-tumor heterogeneity
that characterises primary human tumors
is loss.6 One strategy adopted in address-
ing these key points in the science of pre-
clinical modeling is the use of PDOXs
whereby tumour fragments from patients
are directly implanted in mice in the
orthotopic sites of origin. Many interest-
ing examples of PDOXs have been report-
ed demonstrating these models’ ability to
reproduce human disease. In particular, the
establishment of breast or pancreatic carci-
noma tumors into the mammary glands or
in the pancreas of mice maintain clinical
features of original tumors as it is shown by
the majority of mice that developed metas-
tases corresponding to patient metastatic
sites, such as lymph nodes, lungs, bone
and peritoneum in the case of breast can-
cer or peritoneal and liver metastasis for
pancreas PDOXs.25,26 The potential of
PDOXs to better predict the response of
tumors to anticancer therapy compared to
subcutaneous models has also been high-
lighted by a recent paper where HER-2
expressing cervical carcinoma PDOXs
were evaluated.27 These authors showed
that PDOXs recapitulated the original cer-
vical cancer of the patient both in terms of
primary tumor and as peritoneal dissemi-
nated disease. Most interestingly, therapy
with the benzamide histone deactylase

inhibitor, Entinostat was effective against
the metastasis while no response to the
treatment was observed in the primary
tumors of PDOXs and in the subcutaneous
PDXs model of the same tumor, thus high-
lighting the importance of using PDOXs in
the development of antimetastatic thera-
pies. Recently, imaging modalities for in
situ assessment of primary tumor growth
and metastatic dissemination have been
developed using different systems. In par-
ticular, the use of Fluorodeoxyglucose–
positron emission tomography (FDG-PET)
and an approach which combines micro
PET and F(ab’)2 fragments of the fully-
human anti-EGFR monoclonal antibody,
panitumumab, have been

successfully evaluated.28,29 Moreover, a
fluorescently-labelled chimeric anti-CEA
antibody was able to detect the primary
tumor and the residual mass after the surgi-
cal resection in whole colon cancer
PDOXs.30

Genetically engineered mouse
models

The growing knowledge of human
genetics has enabled the use of a wide array
of genetically engineered mouse models
(GEMMs) which have permitted to unveil
or better understand the role of many genes
in normal physiological or malignant
processes including cancer. These models
are established by modifying genes in dif-
ferent ways and by introducing these genet-
ic modifications into the germ line or into
specific tissue or cell types through condi-
tional knockout strategy.31 GEMMs are
able to mimic changes responsible for the
development and progression of cancer and
are also capable of recapitulating different
types of human cancers thus contributing to
identifying mutational events which act as
genetic drivers and modifiers, as well as
modulating the response to therapies.32 One
of the main features that distinguish
GEMMs from ectopic or orthotopic
xenografts is represented by the mainte-
nance of the tumor-stroma tissue or organ
microenviroment of an immuno-competent
host.31 Therefore, the role of immune
response or immunosurveillance in the
response to chemotherapeutics should be
more thoroughly studied in GEMMs than in
classical immunodeficient mice. A good
example of GEMMs application in the
study of key regulators of inflammatory
and immune response is the work of
Meylan et al.33 They used a mouse model
of lung cancer with defined mutations in
Kras and p53, which showed that activation
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of the NFκB pathway is a critical event in
lung tumorigenesis. Interestingly, the
authors demonstrated that treatment with
NFκB antagonists led to significant impair-
ment of tumor development. This effect
was associated with an inflammatory
response as observed by the recruitment of
inflammatory cells to tumors.

A major hurdle in fighting cancer is the
need to cure the numerous number of dis-
eases we call cancer. In fact, we now know
that cancer develops in many different
genetic subtypes and this diversity deter-
mines the response or resistance to treat-
ments. From this perspective, GEMM may
be useful in reproducing the different forms
of cancer of the same histotype in vivo to
identify effective therapies. A paradigm is
represented by the studies on acute
promyelocytic leukemia (APL) which has
many subtypes, genetically heterogeneous
and shows different responses to therapy.34

At the same time APL is a rare disease, rep-
resenting approximately 10% of all
myeloid leukemias and consequently, given
that patients have to be stratified based on
the genetic patterns, the number of patients
to enroll for clinical trials is frequently
never enough to give statistical signifi-
cance. To overcome these limitations,
Pandolfi’s group35 reproduced, in large
cohort of mice, various human fusion genes
and biological and pathological characteris-
tics of human diseases as well as validate
GEMMs for the chemotherapeutic
response. Importantly, their study permitted
to discover new treatment modalities for
APL leading to the approval of the histone
deacetylase inhibitor, Suberoylanilide -

hydroxamic acid (SAHA), for clinical
use. This strategy has been applied also
in the solid tumor context developing a
series of GEMMs representing different
patient populations with the same cancer.
They also demonstrated, as in the case the
prostate cancer, the role of specific genetic
alterations in the response to androgen-
deprivation therapy together with the close
correlation between the response of patients
and GEMMs to the same therapy.36 Despite
the obvious advantages and results
obtained by using GEMMs, this model has
a number of limitations including the
length of time and the high costs necessary
to develop and maintain a sufficient num-
ber of mice to produce statistically signifi-
cant data. This is also a consequence of the
heterogeneity of GEMMs in tumor devel-
opment with regard to frequency, latency
and growth characteristics, an aspect which
poses significant problems when several
experiment groups are evaluated.31

Moreover, GEMMs do not completely
model extensive genetic alterations, tumor
heterogeneity nor different aspects of dis-
ease progression and metastasis observed
in human cancers.37 The use of imaging
modalities are essential for assessing tumor
growth and dissemination as well as for
evaluating the efficacy of therapies. The
costs for carrying out these analyses need
consistent investment initially which large-
ly limit the large-scale use of the GEMMs
model.

It is for these reasons that, it has been
suggested to not use GEMMs in the initial
stages of drug development but rather to
apply them later, in order to optimize lead

compounds in clinically relevant GEMMs
to effectively support the translational drug
process.6

Humanized mouse models
Recent advances in our understanding

of the interplay between cancer cells and
the surrounding stromal tissue highlight the
important role of the microenvironment in
cancer growth, dissemination of metastasis
and response to therapy. In fact, tumors
release chemokines which influence the
growth of stroma cells that at the same time
produce factors affecting tumor growth.
Moreover, the inhibition of such interac-
tions producing continuous T-cell activa-
tion, led to the development of novel anti-
cancer immunotherapeutics such as ipili-
mumab, nivolumab and pembrolizumab.38

Given that for the efficacy of these
therapies is crucial in a functional immune
system, the use of classical immunode-
pressed mice for drug preclinical develop-
ment is very limited thus making research
for more suitable experimental models
vital. To this purpose, since the discovery
of NOD-SCID immunodeficient mice
bearing mutations in the IL2 receptor
common gamma chain (IL2rgnull) in the
early 2000s, different types of humanized
mice have been developed from severely
immunodeficient mouse strains such as
NOD/Shi-scid-IL2rgnull (NOG),39

NOD/LtSz-sciIL2rgnull (NSG)40 BALB/c
Rag2null IL2rgnull,41 partially reconstitut-
ing the human immune system. In early
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Table 1. The main features of the most advanced mouse models for cancer biology and drug discovery studies.

Type                                 Mouse species            Advantages                                                          Limitations

Patient-derived xenografts   Immunodeficient                -  Maintain tumor                                                                    -   Low take rate and long
                                                                                                        heterogeneity, stromal components, histological          time frame required for engraftment
                                                                                                        and molecular characteristics of patient tumors       -   Lack of metastatic spread (s.c. implant)
                                                                                                     - Easy propagation for testing new drugs and                 -   Fail to replicate interactions with
                                                                                                        combinations                                                                           human microenviroment
Orthotopic and                        Immunodeficient and        -  Assessment of drug                                                           -   High variability in
dissemination models            immunocompetent                activity on primary tumor and metastases                        primary tumor growth and metastatic spread
                                                                                                     -  Tumor stroma- microenviroment interaction             -   Need of advanced real-time imaging systems
                                                                                                        is maintained (immunocompetent mice)                     -  Very skilled personnel is required
Genetically engineered         Immunocompetent            -  Well defined genetic driver of tumor                            -   Partial modeling of genetic alterations
mouse models                                                                             development and progression                                             observed in human cancer
                                                                                                     -  Maintenance of tumor stroma-microenviroment      -   Time of tumor development is heterogeneous
                                                                                                        interactions                                                                          -   Metastatic pattern do not mimic human cancers
                                                                                                     -  Presence of intact immunosystem                                 
Humanized mouse models   Immunodeficient                -  Similarities with human cancer in tumor structure,  -   Variability in tumor of 
                                                                                                        metastasis and signaling                                                       stroma and immunocell infiltration
                                                                                                        Growth of human tumor in a context of functional   -   Presence of immunoreactive T cells
                                                                                                        human immunosystem                                                      -   Incomplete B-cell differentiation
                                                                                                     -  Development of new immunotherapeutics                      and activation of antigen-specific response
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studies, humanized mice were derived by
the direct injection of human peripheral
blood but more recently are generated by
the engraftment in mice of CD34+ human
hematopoietic stem and precursor cells
(HSPC) obtained by fetal cord blood. These
mice developed a human immune system
with differentiated and functional T and
B cells, macrophages, and other cells
capable of interacting with xenograft
tumor tissues.40 The implantation of tumor
cells in these mice permitted to highlight a
specific immuno-response stimulated by
the growth of the tumor.42,43 Very recently,
Morton et al.43 reported that by adding
purified Tat- MYC and Tat-Bcl2 fusion
proteins to cultured HSPCs the number of
CD34+ cells markedly expanded, while
transduced HSPCs retained the ability to
differentiate into either myeloid or lym-
phoid cells, thus recapitulating both lineag-
es of the human immune system.
Interestingly, i n  head and neck PDXs,
the relationship between the tumor and
immune system was similar to the one
found in the patient in whom the tumor
originated was observed. In particular, the
authors observed that the stroma surround-
ing the tumors had human T and B cell
infiltration, the stromal microenvironment
was reprogrammed, with alteration of gene
expressions governing the extracellular
matrix, the immune response, and the
epithelial–mesenchymal transition.44

Importantly, humanized mice may be
useful not only for studying human dis-
eases but also for discovering more effec-
tive anticancer therapies. Even though we
are still in the early stages of this type of
technology, there are several recently pub-
lished studies showing the utility of
humanized mice in the development of
immunomodulatory anticancer agents. In
particular, Chang et al.45 demonstrated the
antitumor efficacy of monoclonal anti-
bodies (mAbs) targeting carbonic anhy-
drase (CA) IX, a surface-expressed protein,
in an orthotopic model of renal cell carcino-
ma (RCC) that was implanted in mice
humanized by injection of allogeneic
human peripheral blood mononuclear
cells. Antitumor activity of anti-CAIX
mAbs correlated with the ability of medi-
ating human immune response in vivo
including tumor infiltration of NK cells
and activation of T cells. Interestingly,
by using humanized mice, Monk et al.46

are developing an integrative approach for
the treatment of ovarian cancer based on
the combination of motolimod, a novel
Toll-like receptor 8 (TLR8) agonist that
stimulates robust innate immune responses
with pegylated liposomal doxorubicin
(PLD), a chemotherapeutic agent that

induces immunogenic cell death. This study
performed on healthy human volunteers,
non-human primates, humanized mice
reconstituted with human CD34+ cells
and cancer patients demonstrated the effi-
cacy of this combination therapy. In partic-
ular, the experiments performed in human-
ized mice implanted with ovarian cancer
cells proved very useful since they
demonstrated that the potent immunomod-
ulation observed in mice following combi-
nation therapy was due to tumor-infiltrating
monocytes and T cells which was associat-
ed with significant tumor control.
Experiments in mice were the determining
factor for scheduling treatment and on
these bases a phase 2 study was initiated.

The major limitations of humanized
mice and possible strategies to improve
the potential of this preclinical model have
been highlighted in a Morton et al.’s
review.44 In this review, one of the main
key points raised was in regard to the
eventual presence of mature xenoreactive
T cells in humanized mice created by the
injection of purified CD34+ cells. In this
case, T cells could recognize tumor cells as
a foreign body and possibly kill them as it
was observed that tumors implanted in
humanized mice grow more slowly than
tumors implanted on the same non-human-
ized mice strain.44 This causes concern
when antitumor efficacy of new com-
pounds is evaluated;  therefore, future
studies should aim to create humanized
mice in which HSPCs and the tumor are
derived from the same patient.

Conclusions
For many reasons mice represent the

model organism of choice for basic cancer
research and for drug discovery as its
genome is very similar to the human
genome and share common physiological
and pathological processes. Moreover,
given that mice are well known for their
small size and short generation time it
permits researchers to use a number of
mice, which makes results statistically sig-
nificant. Since the first studies

reporting on the use of in vivo murine
leukemia models for drug efficacy in the
1950s47 and the discovery of the nude
mutation on chromosome 11 of athymic
mice lacking T- lymphocytes in 1966,48

many efforts have been devoted to the
development of mice models in predicting
the response of chemotherapeutics in
humans. Today, there is a very large panel
of advanced mouse models which can
mimic the complexity and the heterogene-

ity of human cancers, specific stages of
tumor initiation, progression and metastati-
zation, the role of the vasculature, the
microenviroment and immune cells. It is
essential to recognize that each model has
advantages and limitations (Table 1) and
consider that no single model is able to
capture all the different aspects of tumor
growth, characteristics and treatment
approaches.6,48 For example, GEMMs and
PDX models can be regarded as comple-
mentary and not interchangeable since
PDX models are generated in immunocom-
promised mice, while GEMM models are
immune competent and at the same time
PDX models are genetically heterogeneous,
while GEMMs are genetically identifiable
by their engineered genetic alterations.49 In
conclusion, the use and integration of dif-
ferent models which better recapitulate the
clinical situation and are able to answer
specific experimental questions seem to be
essential in the drug discovery process and
in improving our translational ability,
which c o u l d  reduce attrition rate
between preclinical studies and clinical
application.
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