

Evaluation of LIAISON[®] *C. difficile* glutamate dehydrogenase and LIAISON[®] *C. difficile* toxin A and B in Copan FecalSwab[™] samples in a three-step algorithm for the diagnosis of *Clostridium difficile* infection

Massimo Oggioni, Alessandra Bielli, Alice Nava, Daniela Adele Pia Campisi Chemical Clinical Analysis and Microbiology, Niguarda Ca' Granda Hospital, Milan, Italy

Summary

The presumptive laboratory diagnosis of *Clostridium difficile* infection is achieved by the means of the detection of a *common antigen* (glutamate dehydrogenase, GDH) in stool, then confirming the positives either by the detection of toxins A and B or by a molecular test for the detection of pathogenicity *locus*, encoding for the two toxins and for the binary toxin. A fully automated chemiluminescence system for the GDH antigen (LIAISON[®] *C. difficile* GDH) and for the detection of toxins A and B (LIAISON[®] *C. difficile* Toxin A and B) (DiaSorin, Gerenzano, Italy) allows for the performance of these tests on large numbers of samples in a short time, ensuring the traceability of the data.

Objective

The first phase of the study evaluated the use of LIAISON[®] *C. difficile* GDH test on stool samples collected using Copan FecalSwabTM (Copan Italia, Brescia, Italy), comparing them with the results obtained using stool samples collected with no transport medium.

In the second phase, using only samples collected using Copan FecalSwabTM, we compared the current routine two-step algorithm

Correspondence: Massimo Oggioni, S.C. Analisi Chimico-Cliniche e Microbiologia, Niguarda Ca' Granda Hospital, Piazza dell'Ospedale Maggiore 3, 20162 Milan, Italy.

E-mail: massimo.oggioni@ospedaleniguarda.it

Key words: *C. difficile*, GDH, toxin A&B, chemiluminescence, 3 step algorithm, molecular, CDAD, immunochromatograph.

Contributions: the authors contributed equally.

Conflict of interest: the authors declare no potential conflict of interest.

Received for publication: 12 January 2015. Accepted for publication: 29 May 2015.

©Copyright M. Oggioni et al., 2015 Licensee PAGEPress, Italy Microbiologia Medica 2015; 30:4953 doi:10.4081/mm.2015.4953

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License (by-nc 3.0) which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. (GDH + molecular), with a three-step diagnostic algorithm (GDH + Toxins A and B + molecular), assuming the molecular test being performed only on GDH-positive but negative for toxins samples.

Materials and Methods

LIAISON[®] C. difficile GDH is a chemiluminescent immunoassay (CLIA) intended for use as a screening assay to detect *Clostridium difficile* antigen, glutamate dehydrogenase, in human feces from persons suspected of having C. difficile disease.

LIAISON[®] *C. difficile* Toxin A & B is an chemiluminescent immunoassay (CLIA) intended for the qualitative determination of *Clostridium difficile* toxins A and B in human feces with suspected CDAD.

EUROCLONE C. *difficile* GDH is a rapid chromatographic immunoassay for the qualitative determination of glutamate dehydrogenase (GDH) in human feces from people with suspected CDAD.

Xpert[®] *C. difficile* (Cepheid Inc., Sunnyvale, CA, USA) is a qualitative in-vitro diagnostic test for the rapid identification and differentiation of Toxin B, and Binary Toxin from appropriate stool specimens collected from patients suspected of having *C. difficile* infection (CDI). The test utilizes automated real-time polymerase chain reaction (PCR) to detect Toxin producing *C. difficile*, which is associated with CDI.

Results

In the first phase were tested 100 samples: 11 were positive and 89 negative by both methods (100% agreement) (Figure 1A).

Eleven GDH positive samples for both methods were tested with LIAISON[®] *C. difficile* Toxin A & B. 3 were positive and 6 were negative for both methods, while 2 were discordant (positive for LIAISON[®] *C. difficile* Toxin A&B IFU and negative for LIAISON Toxin A&B Copan fecalSwabTM) (Figure 1B).

These results of the first phase confirming that the LIAISON[®] *C. difficile* GDH and Toxin A&B tests can be performed with stool samples collected in Copan FecalSwabTM.

In the second phase 200 samples analyzed by routine laboratory immunochromatographic method for the detection of GDH were retested with the test LIAISON[®] GDH. 157 samples were negative with both methods; whereas 39 samples were GDH positive for both methods, and 4 were GDH-weakly positive with LIAISON[®] and negative for the routine method. (being the four negative samples for the routine method were not analyzed by the molecular method and consequently discarded) (Figure 1C).

The 39 GDH-positive samples were evaluated using either the LIAI-SON[®] C. difficile Toxin A & B and routine molecular method

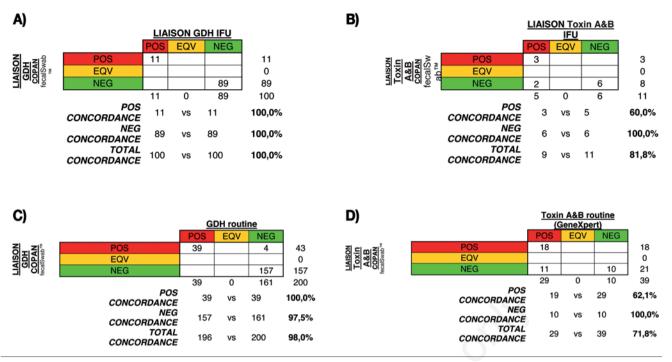


Figure 1. A) First phase of the study: 100 samples were tested for both methods; B) 11 GDH positive samples for both methods were tested with LIAISON[®] *C. difficile* Toxin A&B. C) In the second phase, 200 samples analyzed by routine laboratory immunochromatographic method for the detection of GDH were re-tested with the test LIAISON[®] GDH. D) The 39 GDH-positive samples were evaluated using either the LIAISON[®] *C. difficile* Toxin A & B and routine molecular method.

(GeneXpert[®] *C. difficile* test, Cepheid). 18 samples were positive and 10 negative by either method, whereas 11 samples were discordant (negative LIAISON[®] Toxin A & B and positive for the molecular test) (Figure 1D).

Conclusions

The LIAISON[®] test is a reliable method for detecting *C. difficile* tox-

ins. The use of a molecular test allows for an increase in sensitivity but is significantly more expensive. Using a three-steps algorithm and performing the molecular test only if the test LIAISON[®] Toxin A & B was negative, only 21 samples would have been tested by the molecular method (11 discordant + 10 Toxins A and B negative), rather than 39, with a 46.2% reduction of molecular tests.

Finally, the three-step algorithm makes it possible to achieve the same results of well the two-step algorithm (GDH + molecular), however with significant time- and cost-savings by optimizing the workflow, thanks to the complete automation of the LIAISON[®] system.