Imaging in nanomedicine: A multidisciplinary challenge
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SUMMARY

About twenty years ago, the application of nanotechnology to biomedical issues gave rise to a new
research field called nanomedicine. In nanomedical research, a wide spectrum of scientific skills is
involved, ranging from the physico-chemical characterisation of new nanocomposites, to their set-up as
therapeutic/diagnostic tools for preclinical/clinical application. Imaging techniques play a major role in
each of these phases, providing information not only on the nanoconstructs’ characteristics, but also on
their interactions with the biological environment, in vitro and in vivo. The present brief note summarizes
the information potential offered by multiple imaging techniques: integrating different scientific compe-
tences is crucial for their proper application and this may be envisaged as an exciting multidisciplinary
challenge in nanomedical studies.
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Nanomedicine is a relatively recent research field (Weber,
1999) and deals with the application of nanotechnology to biomed-
ical purposes (Wagner et al., 2006). This challenging target implies
the involvement of a wide spectrum of scientific skills, from the
physico-chemical characterisation of new nanoproducts, to their
set-up as therapeutic/diagnostic tools and their preclinical/clinical
application. In each of these phases, imaging techniques are of
great importance and, especially in the last decade, they have wide-
ly been used, being present as working tools in about 25% of the
published articles on nanomedical subjects (Malatesta and
Calderan, 2020).

High-resolution transmission electron microscopy (HR-TEM),
cryo-TEM and atomic force microscopy (AFM) are the techniques
of choice to visualize and characterize isolated nanocomposites
(Jain and Thareja, 2019; Rozo et al., 2020; Venkateshaiah et al.,
2020); they are however scarcely useful in nanomedical research,
where the main scope is to investigate the interactions of nanopar-
ticles with the biological environment.

Imaging techniques in nanomedicine must enable the visualiza-
tion of the nanoconstructs inside the biological milieu, ensuring an
optimal preservation of the structural features and the spatial rela-
tionships of nanoparticles with the tissue components, while pre-
serving, in the case of in vivo studies, the viability and physiologi-
cal function of the organism.

Thus, light microscopy and conventional TEM and scanning
electron microscopy (SEM) have become irreplaceable tools for in
vitro and ex vivo studies to track nanoparticles in cells and tissues,
with special reference to their extracellular and intracellular distri-
bution, cell uptake mechanisms, and interaction with cell
organelles and the extracellular components.

The most used technique to visualise nanoparticles in tissues
and cells is fluorescence (especially confocal) microscopy. This
technique has widely been applied to test the targeting efficacy of
various nanocarriers aimed at treating different pathological condi-
tions, among which cancer (e.g., Zhou et al., 2011; Lei et al., 2015;
Avvakumova et al., 2016; Singh, 2017; Ricci et al., 2018; Drijvers
et al.,2019), infectious diseases (Alukda et al., 2011) or neuromus-
cular diseases (Costanzo et al., 2019; Guglielmi et al., 2019).
Frequently, the intracellular detection of nanoparticles at fluores-
cence microscopy has been associated with flow cytometry, which
makes it possible to quantify the nanoparticle uptake in single-cells
samples (Koren et al., 2012; Wang et al., 2015; Yahia-Ammar et
al., 2016; Liang et al., 2017; Alnasser et al., 2018). Confocal fluo-
rescence microscopy was also combined with steady-state fluores-
cence spectroscopy (Damalakiene ef al., 2013), spectrofluoromet-
ric analyses (Das et al., 2015; Fiorentino et al., 2015), traction
force microscopy (Wei et al., 2018), or magnetic resonance imag-
ing (MRI) (Azhdarzadeh et al., 2016; Vu-Quang et al., 2016).

In the attempt to overcame the diffraction limit of light
microscopy, super-resolution microscopy has also been used in
nanomedical research (Jin ez al., 2018; Pujals and Albertazzi, 2019;
Qiu et al., 2020; Rojas-Sanchez et al., 2020), but TEM and SEM
remain the most effective high-resolution techniques to obtain
detailed information on the interactions between nanocomposites
and the biological components (e.g. Liu et al., 2015; Costanzo et
al., 2016a, 2016b; Marinozzi et al., 2017; Siow et al., 2018;
Codullo et al., 2019). In addition, electron energy loss spec-

troscopy (Boyles et al., 2015), electron tomography (Guarnieri et
al., 2017), or inductively coupled plasma-mass spectrometry
(Mohamed et al., 2017) have been associated with TEM, to
improve its informative potential with compositional and quantita-
tive data.

Original combinations of different imaging techniques have
been designed to obtain a more comprehensive view of the biolog-
ical interactions of nanoparticulates: bright-filed microscopy has
been used in parallel with fluorescence microscopy and TEM
(Mannucci et al., 2020) or SEM and AFM (Skopalik et al., 2014);
phase contrast microscopy and confocal fluorescence microscopy
were performed together with TEM (Abedin ef al., 2018) or SEM
(Jenkins et al., 2015); dark field microscopy was used in associa-
tion with hyperspectral imaging (England et al., 2013).

Moreover, well-established histochemical methods were suc-
cessfully employed to detect specific nanoparticles that could hard-
ly be visualized at light or electron microscopy after conventional
staining procedures. The classic Prussian blue staining was used to
label iron-containing nanoconstructs (Chen et al., 2011; Zhu et al.,
2012; Jiang et al., 2014; Chica et al., 2016; Skopalik et al., 2014);
silica gold nanoshells and citrate gold nanoparticles were detected
and quantitatively assessed in spheroids of different cancer cells in
vitro after silver-enhancement staining (England et al., 2013);
using the Alcian blue staining, Carton et al. (2019) were able to
label hyaluronic-acid-based nanoparticles at TEM, and described
their endocytosis, organelle interaction and degradation;
diaminobenzidine photo-oxidation allowed performing correlative
studies at light and electron microscopy of the intracellular fate of
fluorescently-labelled nanoparticles (Malatesta et al., 2012, 2014,
2015; Costanzo et al., 2016b).

In vivo imaging techniques such as MRI, optical imaging (OI)
or positron emission tomography (PET), and computed tomogra-
phy and ultrasonography allow detecting nanocomposites in the
whole organism and are especially suitable for longitudinal studies
on their biodistribution, targeting and clearance. MRI has been
mostly applied to investigate magnetic nanoparticles (Yu et al.,
2017 Mannucci et al., 2018; Tay et al., 2018; Deh et al., 2020),
while OI proved to be especially suitable to track fluorescently
labelled nanoconstructs (Rampazzo et al., 2012; Bruns et al., 2017;
Esposito et al., 2017; Tapeinos et al., 2017; Mannucci et al., 2020;
Moreno et al., 2020). In vivo PET imaging is the technique of
choice to monitor radiolabelled nanoparticles (Belderbos et al.,
2020; Gawne et al., 2020; Kollenda et al., 2020; Nagachinta et al.,
2020), while ultrasound analysis and fluorescence-mediated
tomography have been used to detect highly echogenic nanocom-
posites (Perera et al., 2017; Wu et al, 2020). Similarly to
microscopy techniques, in vivo imaging methods have been com-
bined in multimodal protocols (Zhang et al., 2014; Konopka et al.,
2018; Tam et al., 2020; Wang et al., 2020). For instance, MRI was
associated with Ol (Mannucci et al., 2017), near-infrared fluores-
cence (Qiu et al., 2018), PET imaging (Madru et al., 2018), or
micro-computed tomography and contrast-enhanced ultrasound
(Sulheim et al., 2018), while PET was combined with OI (Boschi
etal.,2011).

The simultaneous application of microscopy techniques and in
vivo imaging allows obtaining comprehensive information of the
biological interactions of the nanocomposites from the cellular to

March 2018 microscopie




the organismic level (e.g., Zhou et al., 2011; Wang et al., 2015; Vu-
Quang et al., 2016; van der Meer et al., 2017; Gonzalez-Gomez et
al., 2019; Esposito et al., 2017; Mannucci et al., 2017, 2020); how-
ever, the integration of different scientific competences, from
physics to chemistry, biology and medicine is necessary to obtain
reliable and conclusive results. Thus, the proper use of imaging
techniques in nanomedical research may be envisaged as a stimu-
lating multidisciplinary challenge.
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