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SUMMARY

Nanoparticles (NPs) have nanometric dimensions, a large surface-volume ratio, physical and chemical
stability and individual optical electronic properties. These characteristics have allowed the use of nanos-
tructured materials for the prevention and treatment of various diseases, such as cancer. NPs have been
designed and modified to improve the pharmacokinetics and pharmacodynamics of drugs, and to target
drugs to cancer cells only. Various nanomaterials can be used for nanomedical applications. In particular,
inorganic NPs, such as zinc oxide (ZnO-NPs), gold (Au-NPs) and silver (Ag-NPs) NPs, have been used
to improve anticancer therapies. Biosynthesized inorganic NPs were loaded with chemotherapeutic drugs
and subsequently functionalized to selectively target cancer cells. Many studies have identified the cel-
lular mechanisms involved after cell-NP interaction: oxidative stress, mitochondrial alterations, lysoso-
mal dysfunction, apoptosis or alternatively autophagy. To improve knowledge of the interaction between
drugs loaded on NPs and cells and optimize their use by reducing toxic effects, transmission electron
microscopy (TEM) techniques proved to be a good investigation tool. TEM observations have shown, for
example, that ZnO-NPs enter the cells by passive diffusion or endocytosis. Ultrastructural analysis
showed that Au-NPs enter the cells by invagination of the plasma membrane and are subsequently inter-
nalized in the autophagosome. This brief review shows that each new NP needs to be evaluated individ-
ually considering all its properties.
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Introduction
Nanotechnology is a science that combines the study of biolog-

ical principles with chemistry and physics to obtain nanometer-
sized particles with specific possibilities and functions. Due to their
size, nanoparticles (NPs) have been considered in recent years for
applications in biomedicine. As it is known, NPs have a large sur-
face-volume ratio, which provides them with mechanical, physical
and chemical stability, and peculiar optical and electronic proper-
ties (Nabil et al., 2019). The development of different nanostruc-
tured materials has opened up new paths for the prevention and
treatment of different diseases. In many cases, specific NPs have
been designed and superficially treated in order to provide compat-
ible drugs for targeting regions in the human body, and to improve
their pharmacokinetics and pharmacodynamics. Nanotechnology
has made it possible to use many tools to attempt new therapeutic
strategies in many diseases, including cancer. In particular, it was
possible to study and implement personalized therapies to over-
come obstacles that are very frequently encountered using conven-
tional drugs (Khan et al., 2020). Therefore, nanotechnology inves-
tigates nanomaterials that can behave as cytotoxic substances or
increase the effectiveness of radiotherapy and chemotherapy,
reducing their side effects. The use of nanomaterials in the treat-
ment of neoplasms must be preceded by careful cytotoxicity stud-
ies of the materials. In fact, sometimes these materials can damage
healthy cells, the immune system or determine the possibility of
developing malignancies in other sites.

In the choice of a nanomaterial to be used for the delivery of
the drug in the tumor mass, there are several parameters that must
be considered, some of which are: size, biocompatibility,
biodegradability of the nanocomposite, toxicity and antigenicity of

the drug to be encapsulated, stability, solubility in water of the drug
and properties suitable for release by the material (Jindal, 2017)
(Table 1).  Recent studies have shown that less than 1% of the
injected NPs reach the site in the solid tumor; this also depends on
NPs once injected into the bloodstream, if the nanomaterial is cov-
ered with proteins (opsonins) that can be recognized from the
mononuclear phagocytic system (Abbina et al., 2020). The interac-
tion between proteins and nanomaterials strongly depends both on
NP properties and on factors, such as the gradient of the plasma, the
constants of the kinetic equilibrium, the circulation time and tem-
perature (Gao and He, 2014; Ban et al., 2020). The adsorbed pro-
teins are divided into opsonins and dysopsonins (Liu et al., 2010)
that have different functions: in fact opsonins induce a rapid clear-
ance of the blood of the NPs whereas dysopsonins are able to pro-
mote a prolonged circulation of NPs in the blood. In a cellular sys-
tem, processes such as endocytosis, biodistribution, characteristics
of NPs are influenced by the adsorption of proteins (Vu et al.,
2019). Very often the NPs are functionalized with specific surface
ligands to ensure that the nanomaterial reaches the set target. The
surface state of the nanomaterial leads to a different degree of
opsonization, which greatly influences targeting, regardless of
whether or not it favors reaching the drug in the tumor. From here,
we understand how important is to study these phenomena for each
nanomaterial to be used, to improve the targeting effect and reduce
the adsorption of proteins that can lead to target failure (Srivastav
et al., 2019).

Nanomaterials can be of various nature, diversifying itself in
size and chemical properties such as biopolymer NPs, carbon nano-
tubes, dendrimers, inorganic particles, liposomes, polymer
micelles, protein NPs, and quantum dots (QDs).

In this brief review, however, we will only talk about inorganic
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Table 1. Advantages and disadvantages of NPs.

                        Nanoparticles                                                  Advantages                                                             Disadvantages

                      Biopolymeric nanoparticles                                          High specific surface area                                                             Hydrophobic materials
                                                                                                            Biodegradable and biocompatible                                        Poor encapsulation efficiency of drugs
                              Carbon nanotubes                                               Easy surface functionalization                                                            Low biodegradability
                                                                                                                Cell membrane penetrability                                                                         Toxicity
                                                                                                                            Efficient loading                                                                                            
                                    Dendrimers                                               Synthesis of well-defined structures                                                  Complex synthetic route
                                                                                                         High chemical and biological stability
                                                                                                           High surface area, loading capacity
                                                                                                            Biodegradable and biocompatible                                                                            
                         Inorganic nanoparticles                                          Easy surface functionalization                                                             Non-biodegradable 
                                                                                                                              Good stability                                                                                       Toxicity
                                     Liposomes                                                      Easy surface functionalization                                                                      Instability
                                                                                                                            Biocompatibility                                                                     Insufficient drug loading
                                                                                                                                                                                                                        Short circulation times in blood
                             Polymeric micelles                                Efficient carrier system for hydrophilic drugs                                   Short circulation times in blood
                                                                                                            Biodegradable and biocompatible                                                                            
                           Protein nanoparticles                                                             Low toxicity                                                                      Low drug loading efficiency
                                                                                                                            Biodegradability                                                                                            
                                  Quantum dots                                                   Strong fluorescence intensity                                                         Cytotoxicity to lung cells 
                                                                                                                                                                                                                           Induction of stress oxidative
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NPs, such as zinc oxide (ZnO-NPs), gold (Au-NPs) and silver (Ag-
NPs) NPs.

Inorganic nanomaterials
As mentioned above, inorganic NPs have been studied in recent

years precisely for their particular optical, magnetic and chemical
characteristics such as stability, inertia and functionalization sim-
plicity (Wang et al., 2020a).

ZnO-NPs
The zinc ions (Zn2+) content in the human body is about 15 mg

per day, it is the most abundant trace element in tissues and biolog-
ical fluids; its absorption occurs through the small intestine and
excretion through the kidneys and skin. It has an important role in
the immune system, and it stabilizes the molecular components of
the cell and the membranes. It also has a regulatory role for many
enzymes involved in the synthesis and degradation of lipid carbo-
hydrates, proteins and nucleic acids, but also has an important role
in cellular homeostasis. A Zn2+ deficiency can lead to the onset and
progression of a neoplastic disease (Ho, 2004), while controversial
researches have shown that Zn2+ accumulation can be important for
tumor progression (Leslie et al., 2016; 2017). It can certainly be
concluded that cancer cells are characterized by a low or altered
concentration of Zn2+. Many research studies have shown that the
release of Zn2+ by the ZnO-NPs can cause a cascade of events that
are responsible for cytotoxic effects in human cancer cells (De
Berardis et al., 2010). ZnO-NPs have shown preferential cytotoxi-
city for cancer cells both in in vitro and in vivo models. The main
advantages for the use of ZnO-NPs in cancer research are summa-
rized below. The concentration of chemical groups (-ZnOH2, -
ZnOH, -ZnO-) on the surface of ZnO-NPs is pH dependent. The
availability of chemical reactive groups allows functionalizing the
ZnO-NPs with antibody and proteins that can improve the selectiv-
ity for cancer cells compared to normal cells. Indeed, under physi-
ological conditions, ZnO-NPs have a strong positive charge. It is
known that cancer cells have high concentration of anionic phos-
pholipids on their outer membrane so the electrostatic interaction
with ZnO-NPs may effectively promote cellular uptake, phagocy-
tosis and cytotoxicity on cancer cells.

Observations at transmission electron microscopy (TEM)
showed that ZnO-NPs enter into the cancer cells by passive diffu-
sion or endocytosis (Figure 1A). Hence, some ZnO-NPs release
Zn2+ after interaction with the acidic environment of lysosomes.
The simultaneous presence of Zn2+ and ZnO-NPs within the cells
induces the formation of reactive oxygen species, mitochondrial
alterations (Figure 2B) and severe nuclear modifications, leading to
apoptosis (Condello et al., 2016). 

The specific selectivity of ZnO-NPs towards cancer cells com-
pared to healthy cells and the intracellular retention of NPs showed
that ZnO-NPs are suitable candidates for antitumor activity as sin-
gle or synergistic agents in combination with chemotherapeutic
drugs (Mishra et al., 2017; Jin and Jin, 2019). ZnO-NPs alone were
effective against different human cancer cell lines from hepatocar-
cinoma, leukemia, and colon, breast, lung, ovarian, cervical, gas-
tric, and epidermal tumors (Jiang et al., 2018). ZnO-NPs, as single
agents, have been tested on in vitro and in vivo models of small cell

lung cancer (Tanino et al., 2020). They induced oxidative stress
and DNA damage on tumor cells, but they were not toxic against
normal lung cells. Recent work has suggested that ZnO-NPs inhib-
ited the progression of melanoma, the drug resistance and metasta-
sis, associated with the ERK-AKT signaling pathway. These data
were promising for further applications on melanoma animal mod-
els and other types of cancer (DeLong et al., 2019). ZnO-NPs, syn-
thesized from the plant Cardiospermum halicacabum, induced tox-
icity on human melanoma (A375 cells) through the modulation of
apoptosis pathway (Duan et al., 2020). Finally, in other tumor mod-
els, as human tongue cancer (CAL 27 cells), ZnO-NPs increased
the intracellular reactive oxygen species levels, decreased the mito-
chondrial membrane potential in a time-dependent manner, and
activated the PINK1/Parkin-mediated mitophagy (Wang et al.,
2018).
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Figure 1. TEM micrographs of colon carcinoma cells treated with
ZnO-NPs. Ultrastructural analysis shows that ZnO-NPs enters
the cell by passive diffusion (A), and induces mitochondrial alter-
ation (B).
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Taking advantage from the peculiar characteristics of ZnO-
NPs, it was possible to load them with drugs and modify their
structure to increase the absorption and interaction specificity with
cancer cells. For example, the ZnO-NPs engineered with glycol,
conjugated with the arginine-glycine-aspartate (RGD) peptide and
loaded with doxorubicin, have been shown to have specific inter-
action with U87MG glioblastoma cells demonstrating strong cyto-
toxic effect compared to cervical cancer cells (HeLa) (Yang et al.,
2019). This therapeutic combination of NPs is considered an effi-
cient system for target antitumor therapy of glioblastoma.

In addition, other researchers have studied ZnO-NPs loaded via
a mesoporous silica nanowire and conjugated with the anti-
Frizzled-7 antibody (FZD-7), a receptor that is very often upregu-
lated in different breast cancer cells. This study has shown that
ZnO-NPs modified by exploiting the potential clinical utility of
FZD-7 receptors are promising tools for the treatment of triple-neg-
ative and drug-resistant breast tumors (Ruenraroengsak et al.,
2019). 

Au-NPs 
Other inorganic NPs used for the drug release system in bio-

medicine are Au-NPs. They have particular optical and electronic
properties (Kohout et al., 2018), are easily synthesized, and their
surface can be modified (Li et al., 2019). The inert nature of Au-
NPs makes them relatively biocompatible but in general, as previ-
ously described, the cytotoxicity of NPs also depends on their
shape, size, surface properties and chemical composition. Another
of the problems that can lead to cytotoxicity is that the uncoated
Au-NPs, which exhibit high surface binding energy, can bind
human plasma proteins, increasing the NP-cell interaction
(Długosz et al., 2020). When NPs interact with the cell, as previ-
ously described, a coating of proteins from the physiological envi-
ronment called the crown complex is formed on their surface
(Aggarwal et al., 2009). Thus, the Au-NPs contain on their surface,
in the crown complex, the opsonins, which are recognized by the
immune cells. This complex mechanism is crucial for the distribu-
tion of NPs in the organs of the human body. To partially avoid
immune recognition, limit the toxic effect and increase their bio-
compatibility, Au-NPs can be coated with biopolymers, chitosan,
proteins, glucan or polyethylene glycol (PEG) (Spinelli et al.,
2019).

As previously described, Au-NPs have unique optical and plas-
mon resonance properties that make them very interesting in the
biomedical field in general and especially in ultra-sensitive detec-
tion as imaging-based therapeutic techniques in neoplastic dis-
eases. Furthermore, due to the presence of a negative surface
charge, they can be functionalized by means of ligands or drugs. 

Here we summarize some applications of Au-NPs in anticancer
therapy. 

Recent studies have shown the antitumor apoptotic activity of
newly synthesized Au-NPs on lung cancer (Wang et al., 2020b).
Au-NPs also induced apoptosis on A498 renal carcinoma cells (Liu
et al., 2019). They inhibited the proliferation of human  gastric ade-
nocarcinoma and exerted anticancer effects on hepatocellular car-
cinoma,  on HCT116 colon cancer cells, on MCF-7 breast adeno-
carcinoma cells, on T24 bladder cancer cells, on HeLa cervical car-
cinoma and  K-562 leukemic cells (Raghunandan et al., 2011;

Ismail et al., 2018; Patil et al. 2018; Wu et al., 2019, Ji et al., 2019).
To overcome the side effects of the main chemotherapeutic

drugs such as 5-fluorouracil (5-FU), doxorubicin (DOX) and pacli-
taxel (PTX), functionalized and non-functionalized Au-NPs have
been used as a drug delivery system on many types of cancer
(Jahangirian et al., 2019). For example, 5-FU has been loaded onto
Au-NPs using ligands, such as thiol and GSH. These formulations
were tested on patient-derived colorectal cancer tissue: this study
showed that the release of 5-FU was pH-dependent and that Au-
NPs loaded with 5-FU were more effective than the free 5-FU
(Safwat et al., 2016). Another study showed that DOX-loaded
AuNPs limited DOX-induced dose-dependent cardiotoxicity (Du et
al., 2018). Finally, Sun and coauthors synthesized Au-NPs coated
with pluronic-b-poly (L-lysine) and loaded with PTX, and used
them for chemo-photothermal therapy. An in vitro and in vivo study
of breast cancer showed that PTX-loaded NPs were more cytotoxic
than PTX alone (Sun et al., 2017).

The correct evaluation of the interaction between Au-NPs and
cells and the potential adverse effects compared to the beneficial
ones are important for the biomedical application of these NPs. An
example is the evaluation of the effect of Au-NP size on their
absorption and cytotoxicity by normal and cancerous cells (Gioria
et al., 2014; Xia et al., 2019). As shown in Figure 2, when NPs
interact with cells different endo- and exo-cytotic mechanisms are
involved. In our study, TEM analysis showed that Au-NPs enter the
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Figure 2. Schematic representation of cell-NPs interactions. NPs
enter the cells by multiple endocytic mechanisms, as clathrin
mediated endocytosis, phagocytosis, micropinocytosis or pinocy-
tosis. Then, NPs are transferred by late endosomes, or lysosomes
or multivesicular bodies. Exocytosis may occur by passive diffu-
sion or be mediated by lysosome secretion or by vesicles.  
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cells through the invagination of the cell membrane (Figure 3A),
they are mainly internalized in the autophagosomes (Figure 3B),
and subsequently induce alteration in the endoplasmic reticulum
and at the mitochondrial level (Gioria et al., 2014).

Ag-NPs 
Ag is another bioinorganic element with promising chemical

characteristics for the production of NPs and their application in
nanomedicine (Hecel et al., 2019). Ag-NPs synthesized from
medicinal plants have anticancer properties, as demonstrated by in
vitro studies on prostate and human lung cancer cells (Dadashpour
et al., 2018; Valsalam et al., 2019; Zhang et al., 2019). The anti-
cancer activity of Ag-NPs can be due to several mechanisms, such

as dynamic interaction with DNA and proteins, oxidative stress,
lysosomal destruction leading to apoptotic or necrotic cell death
(Jadhav et al., 2018). Like other NPs, the anticancer effect of Ag-
NPs depends on various chemical properties, such as particle size,
surface charge, bonding properties, aggregation potential (Jadhav
et al., 2018). Some anticancer drugs have been administered via
Ag-NPs, to increase efficacy and reduce the side effects.
Epirubicin-coated Ag-NPs were synthesized and analyzed on
human HepG2 liver carcinoma cells, showing good anti-tumor
properties at low drug concentration (Ding et al., 2019). Ag-NPs
coated with a camptothecin-based polymeric prodrug were devel-
oped; the study on HeLa cell showed that Ag-NPs increased drug
release based on pH sensitivity (Qiu et al., 2017). Ag-NPs have
also been used to overcome resistance to drugs by simultaneously
administering two drugs such as trichosanthin protein and albenda-
zole; this Ag-NPs co-delivery system also inhibited the prolifera-
tion of drug-resistant cells of lung and colon cancer (Tang et al.,
2017).

Conclusions
NPs are fundamental tools for biomedical research. However,

the development of NPs with therapeutic efficacy requires a thor-
ough knowledge of their interactions with cells in order to improve
their use and reduce any toxic effects. To improve the understand-
ing of the interaction of a composite structure such as the NP-drug
complex with the cell, TEM is the perfect investigation tool. Due
to the high number of variables that influence the potential toxicity
of nanomaterials, it is not possible to make general conclusions on
the effects associated with the exposure to nanomaterials: each new
NPs must be evaluated individually, considering all its properties to
make it biocompatible to become an efficient carrier for use in drug
delivery. This review showed some recent experimental results that
reported the application of inorganic ZnO-, Au- and Ag-NPs in bio-
medicine, in view of an increasingly safe and responsible use of
nanomaterials.
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