Dermal ultrastructure in a case of Parry-Romberg syndrome
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SUMMARY

A case of Parry Romberg syndrome (PRS) in a 7-year-old girl is described. Ultrastructural investigations,
supported by clinical evaluations, were performed on both affected and unaffected skin. Connective tis-
sue abnormalities were mainly observed in the diseased area, where an increased number of mast cells
can be observed, and collagen is organized in large bundles with fibrils of heterogeneous diameters. Data
are suggestive for increased matrix remodeling in the affected skin.
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Introduction

Parry-Romberg syndrome (PRS), also known as progressive
facial hemiatrophy, is a rare disease characterized by facial tissue
atrophy, more frequently occurring unilaterally and involving skin
and subcutanecous tissue (Whyman et al, 1992; Stone, 2006;
Duymaz et al., 2009; Patel et al., 2010). The disease was firstly
described by Caleb Parry in 1825 and by Moritz Romberg in 1846,
but, still, the etiology and the pathogenic mechanisms leading to
the clinical phenotype are unknown. Autoimmunity, viral infection,
dysfunction of the nervous system, endocrine disorders have been

hypothesized as potential causative events (Baskan et al., 2006;
Budrewicz et al., 2012; Bucher et al., 2016). The prevalence of the
disease has been estimated around 1:700.000, women are slightly
more affected than man with a ratio of 3:2 (Lakhani and David,
1984; Miller et al., 1987; Stone, 2006) and disease onset usually
starts during the first or second decade of life, slowly progressing
for a number of years possibly affecting also the underlying mus-
cles, cartilage and/or bone (Stone, 2003; Paprocka et al., 2006).
The clinical phenotype is characterized by a great heterogeneity:
some patients exhibit a prevalence of neurologic disorders, where-
as others are mainly characterized by connective tissue alterations,

Figure 1. Dermal ultrastructure of unaffected (A-B) and affected (C-D) skin. Collagen (c) bundle organization is shown in panels A and
C, whereas the frayed contour of elastic fibers (e) is better visualized at higher magnification in panels B and D. The diameter of col-

lagen fibrils is clearly visible in inserts. Scale bars: 1 pm.
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thus suggesting that PRS can represent a clinical entity largely
overlapping a localized form of scleroderma, i.e. linear scleroder-
ma or en coupe de sabre, as part of the same spectrum of diseases
(Peterson et al., 1995; Laxer and Zulian, 2006; Khamaganova,
2018).

Despite connective tissue involvement, very few data are avail-
able on dermal structural organization in PRS. Previous investiga-
tions have demonstrated that diseased specimens have increased
levels of glycosaminoglycans and/or hyaluronic acid, without any
change in the collagen content compared to controls (Sakuraoka et
al., 1992), but to our knowledge comparison between affected and
unaffected areas was never done. The present study, for the first
time, describes a case of PRS affecting a young girl, focusing on
the ultrastructure of the dermis in both affected and unaffected
skin.

Case Report

A 7-year-old girl presented progressive facial hemiatrophy on
the left side of her face since the age of 5. Moreover, a dimple
region in the left parietal bone and axonometric palate associated
with dental malocclusion were also observed, consistent with
skeletal findings frequently observed in the mandibula (Wong et
al., 2015). Skin appeared thin with reduced elasticity and local
alopecia. Neurologic investigations did not highlight any abnor-
malities of cerebral structure and function.

Skin biopsies were obtained from left and right side of the scalp
corresponding to affected and unaffected areas, respectively.
Samples were immediately fixed in 2.5% glutaraldehyde in 0.1M
cacodylate buffer and processed for electron microscopy as already
described (Boraldi et al.,, 2019). Ultrathin sections were observed

Figure 2. Dermal fibroblasts in the dermis of unaffected (A-B) and affected (C-D) skin. The abundance of the endoplasmic reticulum

(arrows) and the presence of collagen fibrils within cytoplasmic vesicles (arrowheads) are frequently observed in cells in the diseased

dermis. Scale bars: 1 pm.
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with a SEM-FEG FEI Nova450 (ThermoFisher Scientific,
Waltham, MA, USA). Procedures were in accordance with the
basic principles of the Declaration of Helsinki and written
informed consent was obtained by the patient’s parents.

Ultrastructural findings

Ultrastructural observations of clinical unaffected dermis
revealed numerous collagen bundles comprised of fibrils with
homogeneous diameters (Figure 1A and insert). Elastic fibers were
rather small, polymorphic and with an irregular contour (Figure
1B) exhibiting a number of cisternae of the holes within the amor-
phous core. At the fibers’ periphery accumulation of unstructured
electron-dense material can be observed, suggestive for the pres-
ence of microfibrillar associated glycoproteins uncovered by
tropoelastin molecules.

In clinically affected areas, the dermis revealed large collagen
bundles comprised of less compact fibrils with heterogeneous
diameters (Figure 1C and insert). Elastic fibers, compared to those
in patient’s healthy skin, were similarly small, but highly frayed
(Figure 1D). The microfibrillar network was barely detectable.

The ultrastructural phenotype of dermal fibroblasts is shown in
Figure 2. In clinical unaffected areas, fibroblasts exhibit an elon-
gated shape in close contact with elastin fibers and collagen fibrils.
Cisternae of the endoplasmic reticulum are visible (Figure 2 A,B).
Fibroblasts in the affected skin were characterized by cytoplasm
filled with abundant and densely packed endoplasmic reticulum
(Figure 2C). Interestingly, a number of fibroblasts exhibited colla-
gen fibrils within vacuoles and membrane surrounded vesicles
(Figure 2D).

Moreover, in clinically affected skin, interactions between
fibroblasts and mast cells can be frequently observed (Figure 3). In
these areas the extracellular matrix was less organized, collagen
bundles being smaller with scattered fibrils.

Discussion

Perry Romberg Syndrome is characterized by neurologic
and/or connective tissue alterations ranging from atrophy (Wong et

Figure 3. Dermal ultrastructure of clinically affected skin highlighting the frequent interactions between fibroblasts (f) and mast cells

(m). Scale bars: 1 pm.
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al., 2015) to fibrosis often overlapping that typical of a scleroder-
ma/scleroderma-like clinical phenotype (Paprocka et al., 2006;
Tollefson and Witman, 2007). The heterogeneity of the clinical
phenotype makes PRS diagnosis rather challenging and therefore it
has been suggested that PRS, linear scleroderma and en coupe de
sabre may represent a spectrum of the same diseases
(Khamaganova, 2018; Schultz et al., 2019).

Therefore, in the absence of a clear genetic signature (Chen et
al., 2018), diagnosis is still based on clinical findings (Schultz et
al,. 2019).

In the light of few data reported in the literature, connective tis-
sue alterations in PRS seem to be limited to altered synthesis of
glycosaminoglycans such as dermatan sulfate and hyaluronic acid,
without any involvement of collagen and elastin (Wong et al.,
2015).

By ultrastructural observations in both affected and unaffected
dermis of the same patient, results indicate that clinical features are
associated with a significant matrix remodeling as demonstrated by
the heterogeneity of collagen fibril diameters, the abundance of
fibroblasts endoplasmic reticulum and the presence of collagen fib-
rils within cytoplasmic vacuoles. This last feature has been sug-
gested to represent a sign of active procollagen processing (Canty
and Kadler, 2005), being consistent with increased matrix remod-
eling. These findings are also in agreement with the more frequent
occurrence of mast cells in the affected dermis. Interestingly, mast
cells have been involved in the pathogenesis of fibrotic processes,
including systemic sclerosis and scleroderma (Atkins et al., 1985;
Ozbilgin and Inan, 2003; Arbi et al.,, 2015; Bradding and Pejler,
2018). Mast cells can store and release a number of lipid-derived
mediators, growth factors and cytokines as well as serine proteases
such as tryptase and chymase. Tryptase induces fibroblasts migra-
tion and proliferation as well as collagen synthesis, whereas chy-
mase can promote fibrosis via the transforming growth factor
(TGF)-B1/Smads signaling pathway (Chen et al., 2017). Moreover,
since mast cells can influence angiogenesis as well as elastin degra-
dation (Sun et al., 2009; Wang and Shi, 2012), these data further
highlight the importance of the crosstalk between fibroblasts and
mast cells (Zhang et al., 2011), suggesting that these interactions
may be involved also in dermal connective tissue alterations in
Parry Romberg syndrome.

Finally, the observation that abnormalities are restricted to spe-
cific sites and that dermal connective tissue characteristics exhibit
differences at the ultrastructural level between affected and unaf-
fected dermis, further supports the hypothesis that exogenous fac-
tors may trigger a local response with detrimental effects on con-
nective tissue homeostasis. These findings, together with the obser-
vation that disease progression can stop after a number of years,
without any apparent reason (Wong ef al., 2015), can open new per-
spectives for the appropriate timing of tissue reconstruction proce-
dures (Chen ef al., 2018).
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