CONTRIBUTI SCIENTIFICI

Microscopy techniques in nanomedical research

Manuela Costanzo, Flavia Carton, Manuela Malatesta

Department of Neurosciences, Biomedicine and Movement Sciences, Section of Anafomy and

Histology, University of Vlerona, Italy

Corresponding author: Manuela Malatesta

Department of Neurosciences, Biomedicine and Movement Sciences, Section of Anatomy and Histology, University of Verona

Strada Le Grazie 8, I-37134 Verona, Italy
Tel. +39.045.8027569
E-mail: manuela.malatesta@univr.it

Summary

In recent years, the application of nanotechnology to biomedicine has been exponentially increasing. The physical and chemical
properties, quality and safety of nanomaterials designed for biomedical application need to be accurately evaluated by means
of reliable and robust techniques. Among the methods used, microscopy techniques play a primary role. This paper presents
a brief overview of the contribution of different microscopy techniques to the study of the structural and functional aspects of
nanoconstructs and their relationships with the biological milieu, demonstrating the great impact that microscopy sciences

have in nanomedical research and applications.
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Introduction

In recent years, the application of nanotechnology
to biomedicine for the development of e.g. new drug
delivery systems, diagnostic tools, sorting systems,
scaffold components (Lim et al., 2010; Bobo et al.,
2016; Fernandes et al., 2016; Soica et al., 2016) has
been exponentially increasing. Understanding the
structure of nanocomposites is crucial to elucidate
their physical and chemical properties, quality and
safety, as well as their distribution and behavior in
vivo. All these features, in fact, strongly affect the
efficiency of nanoconstructs in the living organism,
from the molecular to the systemic level. It is there-
fore essential to perform accurate studies by means
of reliable and robust techniques. Among the meth-
ods used for evaluating the structural and functional
aspects of nanoconstructs and their relationships
with the biological milieu, microscopy techniques
play a primary role. This paper presents a brief
overview of the contribution of different microscopy
techniques to the development of nanomedicine.

Microscopy to characterize nanoconstructs
for biomedical application

A wide variety of analytical methods have been
used for evaluating the physico-chemical character-
istics of manufactured nanomaterials (for a review,
see Lin et al., 2014): these include chromatography,
electrophoresis, magnetic resonance, X-ray scatter-

microscopie Marzo 2017

66

ing and spectroscopy, mass spectrometry, circular
dichroism spectroscopy, zeta-potential measure-
ments, as well as techniques of microscopy on which
the present article will especially be focused.

In fact, transmission electron microscopy (TEM) is
one of the most efficient tools for the characteriza-
tion of nanomaterials. TEM provides high resolution
of minute structural details, which is essential, for
instance, to obtain information about the crystalline
structure and granularity of the nanoparticles
(Williams and Carter, 2009). Through TEM it is also
possible to detect alterations in nanoparticle mor-
phology due to the incorporation of drugs at differ-
ent concentrations, thus representing an indispensa-
ble technique for the development of drug delivery
systems (Govender et al., 2000). To be suitable for
observation at TEM, nanomaterials usually need to
be dehydrated, but it is also possible to freeze them
(cryo-TEM), thus better preserving their original
morphology (Williams and Carter, 2009). Although
TEM provide 2D images, the technique of electron
tomography can be used to create 3D images using a
sequence of micrographs taken at different tilts
(Williams and Carter, 2009).

Scanning electron microscopy (SEM) uses elec-
trons for high resolution imaging of the sample sur-
face (Reimer, 2000), and represents a valid tool to
investigate some nanomaterials (Bogner et al., 2005).
The topography of the nanostructured samples can
be preserved using special techniques that avoid any
manipulation (environmental or wet SEM) or pre-
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serve their morphology by rapid freezing (cryo-
SEM). The environmental SEM, allowing analyses on
hydrated materials without fixing, drying, freezing or
coating the specimen (Bogner et al., 2005), is espe-
cially suitable to characterize microspheres and
microcapsules (Xiong et al. 2012). Cryo-SEM method
has been applied for the characterization of micros-
pheres (Allan-Wojtas et al., 2008) and nanoemulsions
(Hoesli et al., 2012).

Polarized light microscopy (PLM) may be used for
the preliminary identification of many liquid-crys-
talline structures (Gaisin et al., 2010). The anisotrop-
ic systems cause a deviation in the plane of polarized
light and show typical black and white or colored
textures. Based on this texture, liquid-crystalline
structures can be classified in: (i) lamellar liquid
crystalline phase which reveals oily streaks with
inserted “maltese crosses” in the micrograph; (ii)
hexagonal liquid-crystalline structure which is indi-
cated by a fanlike texture (Miiller-Goymann, 2004;
Carvalho et al., 2010; Rissi et al., 2014). However,
PLM can be applied to particles whose size
approaches the wavelength of visible light (400 to
700 nm); for liquid crystal particles presenting small-
er dimensions, TEM is necessary to resolve them
(Miiller-Goymann, 2004).

Atomic force microscopy (AFM) is one of the most
popular scanning probe microscopy methods
(Binning et al., 1986) and the interaction of nanopar-
ticles with the AFM probe has been extensively stud-
ied from different experimental points of view (AFM
tip modification, nanoparticle manipulation, sub-
strate influence) (Theil Hansen et al. 1998; Lee et al.,
1998; Klapetek et al., 2011; Henry, 2005). AFM allows
detection and imaging of nanoparticles from 0.5 nm
in diameter and, although it has been mostly applied
to inorganic nanoconstructs, it is also suitable to
characterize hydrated nanomaterials.

Microscopy for visualizing nanoconstructs
in living organisms

To be used in nanobiology and nanomedicine,
nanoconstructs need to be tested in living organisms.
Cells cultured in wvitro, which ensures simple and
controlled conditions, represent the experimental
model of choice. The preliminary utilization of in
vitro systems also allows short experimental times
and reduction of the number of laboratory animals
for the following in vivo studies, thus implying a sig-
nificant decrease of the research costs.

Light microscopy has been largely applied for the
safety assessment of nanomaterials and for design-
ing efficient administration strategies for biomedical
use. Microscopy techniques proved to be useful to
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study the interaction of nanoparticles with the cells
and to visualize their intracellular fate, while allow-
ing to simultaneously evaluate signs of cell damage
or death (for a review, see Ostrowski et al., 2015).
By definition, nanoparticle are less than 100 nm in
size and cannot be resolved as single entities even at
the highest magnification in conventional light
microscopy. Thus, only nanoparticulates that form
clusters or aggregates of more than 200 nm in size
can directly be visualized in single cells or tissues.
Depending on their chemical composition, some
nanoconstructs (e.g., carbon nanotubes, iron oxide
or titanium dioxide nanoparticles) can be directly
observed as naturally colored deposits (Porter et al.,
2010; van Landeghem et al., 2009; Adachi et al., 2010).
Enhanced darkfield microscopy has also been used
to detect metal oxide nanoparticles in histological
samples (Roth et al., 2015). In addition, some histo-
chemical techniques are suitable to stain either inor-
ganic or organic nanoparticles; Prussian blue may be
used to stain iron containing nanoconstructs (Bumb
et al., 2011 and Figure 1a) while nanoparticles con-

Figure 1. a) Brightfield microscopy. Iron oxide
nanoparticles (Prussian blue staining) inside a
murine fibroblast (hematoxylin countestaining).
b) Fluorescence microscopy. Chitosan nanoparti-
cles (green) inside a human epithelial cell; lysoso-
mes (red) are visualized by specific immunostai-
ning; DNA (blue) is stained with Hoechst 33258.
Bars: 20 pm.
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taining polysaccharide with negatively charged sul-
fate groups have been successfully visualized by
Alcian blue staining (Holzhausen et al., 2013).

No doubt, fluorescence microscopy is the most
widely used approach to investigate the biodistribu-
tion and the intracellular localization of nanocon-
structs at light microscopy. To this purpose, nanopar-
ticles are usually labelled with fluorochromes
(Figure 1b), which must be selected for their struc-
ture, molecular weight and charge not to alter the
physicochemical characteristics of nanoconstructs.

The interaction of fluorochrome-conjugated
nanoparticles with specific cells or intracellular
organelles may be visualized by the simultaneous
immunofluorescence labelling of marker proteins
(Cho et al., 2009; Malatesta et al., 2015 and Figure
1b). A more precise spatial localization of nanoparti-
cles in their interactions with cells may be obtained
by confocal laser scanning microscopy: by this tech-

nique, serial optical sectioning of the sample are
obtained, which allows 3D reconstructions of single
cells or tissues sections. However, confocal
microscopy is diffraction-limited as much as conven-
tional fluorescence microscopy, so that the X-Y reso-
lution is restricted to about 200 nm, substantially
larger than the <100 nm size of nanoparticles.
Techniques of super-resolution light microscopy may
overcome this limitation, allowing to significantly
increase X-Y resolution up to about 30 nm (Willig et
al., 2006; Sonnefraud et al., 2014; Guggenheim et al.,
2016).

TEM, thanks to its higher resolution, is however
the most appropriate approach to obtain detailed
and unequivocal information on each step of
nanoconstruct interactions with the cell compo-
nents, from their uptake at the cell surface to their
intracellular degradation (Figure 2). A clear analysis
of nanoparticle internalization mechanism(s) can be

Figure 2. Transmission electron microscopy. a) Gold nanoparticles (arrow) internalized in a human
macrophage. b) Lipid nanoparticles (arrows) entering a human epithelial cell. ¢) Polymeric nanoparti-
cles (arrows) in a human myoblast. d) Quantum dots (arrow) inside a murine macrophage. Bars: a,c 200

nm; b,d 1000 nm.
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obtained, visualizing the contact with the plasma
membrane and the passage into the cell by endocyto-
sis, phagocytosis or membrane fusion (as in the case
of nanoconstructs of lipid nature) (e.g., Zhang et al.,
2011; Malatesta et al., 2012; Costanzo et al., 2016a,b;
Boyles et al., 2015; Poussard et al., 2015; Lopes et al.,
2016; Messerschmidt et al., 2016; Zielinska et al.,
2016). The distribution of the nanoparticulates in the
cellular compartments provides information on their
fate: the entrapment into endosomes or phagosomes
prefigures their rapid degradation in the lysosomal
compartment, while their free (organelle-unbound)
occurrence in the cytosol indicates their ability to
escape endosomes and, consequently, the enzymatic
lysis (Panyam et al., 2002; Varkouhi et al. 2011).
However, TEM observations revealed that these free
nanoparticles may re-enter the lytic pathway by
autophagosomal processes (Costanzo et al.,
2016a,b). Importantly, TEM allows to distinguish the
presence of intact nanoparticles or their remnants
after enzymatic lysis, thus providing unequivocal
information on their biodegradability. TEM can also
provide clear evidence for the distribution of
nanoparticulates inside the cell nucleus: some
nanoparticles may, in fact, enter the nucleus by pass-
ing through the nuclear pores or being entrapped
therein at the end of mitosis (Nabiev et al., 2007,
Colonna et al., 2011; Guan et al., 2012; Malatesta
et al., 2013, 2015; Zhang et al., 2015). This is a crucial
information for evaluating the safety of nanocon-
structs, since the persistence of exogenous materials
in close proximity of nucleic acids may have unpre-
dictable consequences on whole cell activity.

An important contribution to nanomedical
research has been given also by correlative
microscopy. Light (especially fluorescence)
microscopy was combined with advanced TEM
methods (conventional, immuno and energy-filtered
electron microscopy, and electron tomography) to
analyze the biodistribution of different types of
nanoparticles (Miihlfeld et al., 2007). Quantum dots
were identified in in vitro and ex vivo samples by
combining fluorescence microscopy, TEM and scan-
ning transmission electron microscopy (STEM)
(Dukes et al., 2010; Killingsworth and Bobryshev,
2016), and the combination of TEM and Serial Block
Face SEM allowed to quantify their intracellular
uptake (Hondow et al., 2016). The intracellular distri-
bution of gold nanoparticles was investigated by
using interferometric photo-activated localization
microscopy and electron microscopy (Shtengel et
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al., 2014), while their identification inside tumor
masses was performed by combining optical
microscopy and SEM (Kempen et al., 2015). The
uptake and intracellular fate of ZnO-based nanopar-
ticles were analyzed combining dynamic confocal
imaging, low resolution bright field TEM and dark
field STEM (Othman et al., 2016). Cryo-soft X-ray
tomography was used to obtain three-dimensional
information on the interaction of super-paramagnetic
iron oxide nanoparticles with cancer cells (Chiappi
et al., 2016). Fluorescence microscopy and SEM
were combined to investigate macrophage uptake of
cylindrical nanoparticles (Tscheka et al., 2015).

Concluding remarks

In the last 15 years, more than 190,000 articles have
been published in qualified journals on nanoparti-
cles, (source: Scopus database, https:/www.sco-
pus.com), and in about 57,000 papers of these,
microscopy techniques were used among the experi-
mental methods. This clearly indicates the great
impact that microscopy sciences have in nanomed-
ical research and applications. It is easy to foresee
that this will even increase in the years to come,
thanks to the continuous progress in microscopy
technology and instrumentation. TEM still is the
most informative approach for investigating the
interaction of nanoconstructs with cells and intracel-
lular organelles, but superresolution light
microscopy may be envisaged as the future in the
field: multicolor histochemical techniques will allow
to simultaneously detect the interactions of nanopar-
ticles with several subcellular components at the
nanodimension of super-resolved fluorescence
microscopy.
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