
Abstract. Metabolic disorders of the central nervous system (CNS) include pathologies with extremely different pathogenesis.
The clinical diagnosis of these disorders is often very difficult and requires sophisticated laboratory investigations. Proton
magnetic resonance (MR) spectroscopy (1H-MRS) has been recently used in a number of clinical studies to supplement con-
ventional MRI as it is able to provide in vivo biochemical assay of a given brain tissue. Brain data on several neurometabolic
diseases suggest that 1H-MRS can provide in vivo chemical-pathological characterization of the abnormality detected by MRI
and can detect metabolic alterations in tissue appearing normal on conventional MRI. This may help for differential diagnosis
and can be important in the evaluation of disease outcome. Indices provided by 1H-MRS have been demonstrated to be rel-
evant to patients’ clinical status, to represent sensitive indicators of early neurological involvement and to be helpful in mon-
itoring effects of therapeutic interventions. This suggests that, in the next future, a more extensive use of brain 1H-MRS in
the management of patients with metabolic disorders affecting CNS should be encouraged.
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DIAGNOSTIC-SPECIFIC 1H-MRS CHANGES

As stated before, the 1H-MRS changes detected in
metabolic disorders are, in most cases, not disease-spe-
cific. However, in some conditions 1H-MRS can pro-
vide typical brain metabolic patterns able to address
the diagnosis. 
One example of a disease in which MRS provides a di-
agnostic pattern is a spongiform leukoencephalopathy
known as Canavan’s disease. In this disorder, the defi-
ciency of the enzyme aspartoacylase (which breaks
down NAA) is responsible for abnormally high levels
of NAA in the brain, which can be considered pathog-
nomonic [8; 9]. It must be stressed, however, that high
NAA level can be also found in Salla disease and se-
vere infantile sialic acid storage diseases [10; 11], but
in these conditions  the high NAA signal reflects an ac-
cumulation of N-acetyl-neuraminic acid that offsets the
possible loss of NAA. Moreover, small increases in
NAA can be found in patients with Pelizaeus–
Merzbacher disease probably reflecting the elevated
density of axons in white matter lacking the oligoden-
drocytic tissue and normal myelin sheaths between
axons [12]. 
In vanishing white matter disease (VWM, also called
childhood ataxia with diffuse CNS hypomyelination)
and megalencephalic cystic leukoencephalopathy
(MCL) [13-18] conventional MRI findings of extensive
white matter abnormalities with sparing of central
brain structures are seen together metabolic changes
detected with 1H-MRS. These changes include the al-
most complete disappearance of all normally detected

INTRODUCTION

The advent of magnetic resonance (MR) imaging
(MRI) has changed the clinical approach to the evalu-
ation of the metabolic disorders. The clinical impor-
tance of MRI in the management of patients with
metabolic disorders of the central nervous system
(CNS) lies in its great sensitivity for detecting brain le-
sions. However, unfortunately, the brain lesions de-
tected on MRI are often not characteristic enough to
allow the diagnosis of these complex disorders [1]. 
In recent years, nonconventional MR techniques have
been used to complement conventional MRI and over-
come some of its limitations. Proton MR spectroscopy
(1H-MRS) has been particularly useful in patients with
metabolic disorders as it can simultaneously provide
chemical-pathological correlates of changes occurring
within and outside visible MRI lesions. Thus, an ex-
panding number of research groups have been using
single voxel 1H-MRS and multivoxel MR spectroscopic
imaging (1H-MRSI) in vivo to study patients with
metabolic disorders [2-4]. These 1H-MRS techniques
have demonstrated to increase diagnostic accuracy and
the understanding of the evolution of pathology in
many of these disorders It must also be stressed, how-
ever, that 1H-MRS is complementary to MRI, except in
a few cases where a disease-specific pattern could be
detected. 
We will give an overview on how 1H-MRS can be  used
as a complementary method to conventional MRI to
detect metabolic changes in the most frequently stud-
ied metabolic disorders. 



metabolites in the white matter, presence of small in-
creases in Lac and sparing of gray matter that is struc-
turally and metabolically normal. In MCL, although
1H-MRS abnormalities tend to be more pronounced
with increasing age, these are generally mild and the
frontal white matter is significantly less involved than
other white matter regions. In patients with VWM dis-
ease, increases in glucose resonance intensities (present
at 3.4 and 3.8ppm) may also be present. This 1H-MRS
metabolic profile is probably due to little brain white
matter tissue left and the great increase in extracellular
spaces. 
Other rare metabolic conditions also may provide di-
agnostic-specific 1H-MRS findings. In phenylke-
tonuria, patients show a specific peak due to the
elevated phenylalanine at 7.37 ppm and, despite the
diagnosis is easily reached testing the enzyme involved
in the disease, the size of this peak can be used in pa-
tients with this metabolic disorder to follow the influx
of phenylalanine from blood into brain tissue as well
as to monitor the response of diet therapy [19-21]. In
the leukoencephalopathy associated with the distur-
bance of the metabolism of the polyols [22], the diffuse
decrease of all normally detected metabolites is asso-
ciated with the increases of arabitol and sorbitol in
both white and grey matter regions. In maple syrup
disease, a relatively specific broad peak is detectable at
0.9 ppm. This region of the spectrum is usually attrib-
uted to lipids, but in maple syrup disease is believed
to represent resonances of methyl protons from
branched-chain aminoacids and branched-chain alpha-
keto acids that accumulate as a result of defective
oxydative decarboxylation of leucine, isoleucine and
valine [23]. Also 1H-MRS studies on patients with Nie-
mann-Pick type C disease have shown increased reso-
nance intensity of the lipid region of the spectrum,
probably due, in this case, to a defective metabolism of
cholesterol with ceramide accumulation [24; 25]. In
both maple syrup and Niemann-Pick type C diseases,
the abnormal broad peak detectable at 0.9 ppm seem
to decrease with appropriate therapy [23; 24]. In non-
ketotic hyperglycinemia, the elevated glycine signal at
3.55 ppm detected by 1H-MRS is particularly meaning-
ful when depicted with long echo time sequences [26;
27]. In this disorder, defective glycine cleavage causes
elevated concentrations of glycine in plasma, urine,
and cerebrospinal fluid. In earlier studies [28; 29], the
reduction of glycine in brain tissue corresponded more
reliably with clinical findings than the stable values in
plasma and cerebrospinal fluid, indicating that 1HMRS
can be a valuable tool in the diagnosis and monitoring
of treatment effects in patients with this rare disorder. 
In succinate-dehydrogenase deficiency, a rare cause of
mitochondrial encephalomyopathy, the presence of an
abnormal peak at 2.4 ppm (originating from the two
equivalent methylene groups of succinate)  in the cere-
bral and cerebellar white matter can provide a meta-
bolic pattern distinctive of the disease [30]
Finally, specific metabolic syndromes have been re-
cently revealed by using proton MRS. This is the case
of the creatine deficiency syndromes, which include

defects in the guanidinoacetate methyltransferase and
in the arginine-glycine amidinotransferase [31; 32],
and the X-linked creatine deficiency syndrome [33]. In
the first two forms of the diseases, the Cr resonance in-
tensity is undetectable in the brain on 1H-MRS, but
cerebral levels of Cr do increase after creatine supple-
mentation. In the X-linked form of creatine deficiency,
as the metabolic defect is due to the transport of crea-
tine into the central nervous system, patients are unre-
sponsive to treatment and the Cr resonance intensity
levels are unchanged after creatine supplementation.
Another condition with very specific 1H-MRS spectrum
is the unique case of a child with minor developmental
delay and absence of cerebral NAA, in whom the most
prominent peak of 1H-MRS at 2.02 ppm was unde-
tectable [34]. Both creatine deficiency syndromes and
the absence of NAA are characterized by mild or absent
abnormalities on conventional MRI suggesting the
unique potential of 1H-MRS in revealing metabolic ab-
normalities in MRI normal-appearing tissue. 

1H-MRS IN THE DIFFERENTIAL DIAGNOSIS OF MITO-
CHONDRIAL DISORDERS

In the clinical suspect of a mitochondrial disorder, 1H-
MRS can offer information useful for the differential
diagnosis beyond what is currently available in routine
clinical use.
For example, the intra-parenchymal levels of Lac are
usually elevated in mitochondrial disorders [3; 35], al-
though it must be also stressed that Lac levels are not
unequivocally elevated in all patients and/or in all the
brain structures. In general, Lac levels are transiently
increased in a number of acute pathological conditions
associated with inflammatory cells [2; 36; 37], but ex-
tensive pathological increases in Lac both within and
outside of MRI lesions may be indicative of wide-
spread energy failure associated with mitochondrial
dysfunction [38; 39]. In addition, as 1H-MRS can pro-
vide advantages in the interpretation of the pathologi-
cal processes underlying the brain tissue, this can be
used to differentiate brain lesions appearing similar on
MRI. That is, much larger increased levels of brain
parenchymal Lac can be found in hypoxic-ischemic
white matter lesions with a complex pathogenesis such
as of the mitochondrial encephalopathy with lactic aci-
dosis and stroke-like episodes (MELAS) than in acute
and chronic cerebrovascular disorders [40]. 
In other very rare metabolic disorders such as the eth-
ylmalonic encephalopathy [41] and a new type of
leukoencephalopathy with slowly progressive pyram-
idal, cerebellar, and often dorsal column dysfunction
[42] the findings of diffuse brain mitochondrial impair-
ment have strongly contributed to the interpretation of
the complex pathogenetic mechanisms of these disor-
ders. In both cases, the diffuse 1H-MRS increase in
brain Lac detected in a multi-voxel 1H-MRSI study was
underlying a primary mitochondrial disorder, as
demonstrated by biochemical and genetic studies [43;
44]. Furthermore, in a very rare metabolic disorders
such as the cerebrotendinous xanthomatosis, the dif-
fuse 1H-MRS increase in brain Lac detected in a single-
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voxel 1H-MRS study [45] add to morphological and
biochemical evidence of mitochondrial dysfunction,
probably secondary to the toxic effect of high
cholestanol and/or bile alcohol levels [46; 47]. 

DEMYELINATING AND DISMYELINATING DISEASES

Myelinogenesis is a complex process that can be al-
tered by various hereditary metabolic defects result-
ing in disorders that are generically grouped under
the term of leukodystrophies. This congenital failure in
myelinogenesis is comprehensive of several mecha-
nisms of myelin disruption such as hypomyelination,
demyelination, dysmyelination, etc., and is due to
very different genetic and biochemical abnormalities,
most of which are still undefined [48]. In these con-
ditions, the 1H-MRS pattern is often not very specific.
However, it might show temporal changes indicative
of the metabolic alterations occurring within and out-
side the abnormalities visible on MRI.
Changes in several metabolites can be seen within de-
myelinating lesions since the very early phase of the
pathological process [6]. Changes in the resonance in-
tensity of Cho result mainly from increases in the
steady state levels of phosphocholine and glycerol-
phosphocholine, both membrane phospholipids re-
leased during active myelin breakdown. Increases in
Lac are likely to reflect the metabolism of inflamma-
tory cells. In acute demyelination, decreases in Cr can
also be seen [6]. Short echo time spectra give evidence
for transient increases in mI [49] and lipids [50], also
released during myelin breakdown. After the acute
phase, metabolic modifications in the demyelinating
lesion show a variable time course [6]. Usually, reso-
nance intensities of Cr and lipids return to normal
within a few days. At this stage, small increase in Cr,
due to changes in cellularity, can be found inside the
demyelinating lesion [51]. Resonance intensities of
Lac show a progressive reduction over a period of
weeks, whereas Cho and mI return to normal in
months. The signal intensity of NAA decreases and,
later, may remain decreased or may show a partial re-
covery [52]. Recovery of NAA may be related to reso-
lution of edema, increases in the diameter of
previously shrunken axons that are secondary to re-
myelination and clearance of inflammatory factors,
and reversible metabolic changes in neurons [52].
In progressive disorders, such as many leukodystro-
phies, the loss of myelin can be very slow and re-
leased membrane phospholipids might not
accumulate. Thus, 1H-MRS changes such as those de-
tected in acute demyelination are not seen. In some
cases, however, (i.e, adrenoleukodystrophy, Krabbe
disease) the high membrane turnover may cause long-
term increases in Cho [53]. In contrast, decrease in
Cho or increase in Cr can be detected in hypomyeli-
nation [54]. In dysmyelinating diseases such as the
Pelizaeus-Merzbacher disease both increases and de-
creases in Cho have been described [12; 55]
A number of brain 1H-MRS studies of patients with
white matter disorders have also shown changes in

the relative resonance intensity of mI.  The function
of mI in the human brain is not clear, but increases of
this metabolite seem to be related to the presence of
white matter gliosis and appear consistently in disor-
ders associated with impaired myelination such as
adrenoleukodystrophy, metachromatic leukodystro-
phies, phenylketonuria and Zellweger syndrome [53;
56-58]. 
Finally, a constant finding of all metabolic disorders
affecting the brain white matter is the large decrease
in cerebral NAA [3]. This, however, might be mild or
absent in hypomyelination [54]. 

1H-MRS TO MONITOR DISEASE OUTCOME AND RE-
SPONSE TO THERAPY

As NAA is found almost exclusively in neurons and
their processes in mature brains decreases in this
metabolite are interpreted as an index of axonal dam-
age, dysfunction or loss [59; 60]. Neuro-axonal dam-
age represents the most important substrate of
functional impairment in neurological disorders.
Thus, it is not surprising that a number of 1H-MRS
studies have demonstrated highly significant correla-
tions between decreasing NAA and increasing clinical
disability in patients with many of these disorders [3;
59]. NAA may offer a highly sensitive, clinically-rel-
evant surrogate of pathological change useful for
monitoring disease progression [61].
Unfortunately, therapy is not an easy task in the meta-
bolic disorders involving the CNS. Despite this, 1H-
MRS has been proposed in trials of patients with
adrenoleuokodystrophy [62] and changes over time
in levels of NAA have been used s endpoint after as-
partoacylase gene transfer [63]. These recent data add
to those previously mentioned such as such creatine
deficiency [31], mitochondrial disorders [39] and
phenylketonuria [64] and other rare conditions,
where 1H-MRS has been used to monitor response to
therapy. In addition, guidelines for a multi-centre use
of 1H-MRS in clinical trials of multiple sclerosis have
been recently provided [65]. All together, these data
suggest that 1H-MRS can be easily performed in rou-
tine clinical settings to monitor treatment, when this
is possible.

CONCLUSIONS
1H-MRS of the brain provides chemical-pathological
information that has the potential to improve both di-
agnostic classification and management of patients
with metabolic disorders affecting the CNS. Meta-
bolic indices provided by 1H-MRS could be sensitive
indicators of early neurological involvement and are
relevant to patients’ clinical status. A more extensive
use of 1H-MRS (possibly with short echo time se-
quences) in combination with other nonconventional
MR techniques might yield a more complete descrip-
tion of the dynamics responsible for pathological
changes in this heterogeneous group of disorders and
may allow a more accurate evaluation of disease pro-
gression and response to therapeutical intervention.
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