
Abstract 

Tigriopus fulvus (Fischer, 1860) is a benthic harpacticoid
copepod of the Mediterranean supralittoral zone. The transitional
characteristics of this environment forced this species to develop
high resistance to changes of environmental parameters.
Nevertheless, T. fulvus life-cycle is influenced from the splashpools
physical-chemical parameters. In this paper, we present the results
of a supralittoral monitoring performed in 2014, confirming the
influence of some of these environmental parameters on population
buildups. Because of recent worldwide climate change effects, a
threat might have been posed on this particularly exposed organism,
whose population density decreased of a sixfold value in the last 30
years. During the three pools (A, B, C) monitoring, the maximum
copepod density recorded was 1456 Ind/l (September 2014, Pool
C), alongside first records of extinction event for T. fulvus.

Introduction

The marine rocky littoral system is divided into well-defined

areas1,2 and represents a transitional environment between land and
sea. Here, environmental conditions show sudden and critical
variations to which resident organisms need to react with refined
adaptation and tolerance techniques.3 These collections of
temporary water represent, particularly in the supralittoral zone, an
ubiquitously distributed environment. Because of low tidal activity,
in Mediterranean splashpools most of water inputs come from sea
storms and rainfall.4 Many aspects of the ecology of this habitat
were studied and described during the last decades.5-15 The benthic
harpacticoid copepod Tigriopus sp. is known to be one of the most
representative and adapted species in the supralittoral environment.
The genus Tigriopus includes many different species, with
worldwide distribution ranging from North-American coasts16 to
Antarctica.17 Two European species are described, but Tigriopus
fulvus is the only one living along the Mediterranean coasts.18 T.
fulvus is also known to be an useful test species in ecotoxicology,
whose reliability was tested with different matrices and
pollutants.19-27 This species inhabits splashpools or rockpools, and
therefore it is exposed to a wide variety of environmental conditions
that promoted refined adaptation and resistance characteristics.
Such variability is ascribed to cycles of drying out or inundation of
rockpools, depending on rainfall, waves exposition and sunlight.
This paper resumes a seasonal study on splashpools and a
comparison with historical T. fulvus population data, in order to
explore the health-state of copepod population.

Materials and Methods

Study area
The studied T. fulvus population can be currently found in

Genova Nervi splashpools (Ligurian Sea, 44°22’52.561 N;
9°2’12.570 E). Three different splashpools (A, B, C) having
different structural characteristics were chosen at different height
and distance from the sea (Figure 1). Studied pools are classified
as splashpools, defined as located above the high-tide line and
receiving marine water inputs only by sprays during heavy seas
and storms and not located in the intertidal zone.2

Splashpools number was considered sufficient as the coastal
morphology of the study sites concentrates many pools in relatively
narrow space. Pools with the same sunlight exposition were chosen,
this means that no structural coverage might cause differences in
pool water warming. Mean pool surface and mean depth were about
2 m2 and 0.5 m, respectively. Height from the sea level ranged
between 4 and 6 meters (A to C). The splashpools were chosen
taking into account the occurrence of T. fulvus at the beginning of
samplings. Samplings followed a fortnightly check, from March to
September 2014.
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Environmental and atmospheric parameters
Splashpools temperature and salinity were acquired through a

multiparametric probe (YSI 30M/50 FT; 0.1°C and 0.1 resolution),
a different probe was needed for pH measures (Etekcity 009, 0.1
resolution, 0.1 accuracy at 20°C). Chlorophyll a and Total
Particulate Matter (TPM) analysis were performed on water samples
collected with opaque plastic bottles. Chlorophyll a (Chla) analysis
was performed following a spectrophotometric method (Analytic
Jena Spekol 1300). Water samples were filtered on glass-microfibre
filters (GF/A Whatman), and subsequently exposed to an overnight
acetone:distilled water (90:10 v:v) extraction prior to
spectrophotometric analysis.28 To evaluate TPM, water samples
were filtered on 0.45 µm porosity Sartorius cellulose acetate filters.
Ponderal analysis was performed on analytic scale, after 2 hours
filters oven-drying (130°C) followed by 1.5 hours in silica-gel dryer.
Organic percentage composition of TPM was evaluated with ash
weighing after a 2h/550°C burning in muffle furnace. Rainfall data
were obtained from the Liguria Region Weather Hydrological
Observatory, a data collection web composed of almost 230
measuring stations spread across Liguria Region. 

Sampling of specimens 
A plastic 250 mL bottle was used to collect samples that were

subsequently fixed in 70% ethanol (v:v); sampling bottle was
dragged along the top of the south facing pool wall, every sampling
day at noon, as made in previous fieldwork.12 T. fulvus specimens
were collected to follow the population variability in terms of
density and composition. Copepods counting was carried out under
light microscope (Nikon SM7-U); Five categories were assigned to
determine population structure, males, females, ovigerous females,
copepodites (C1-C5) and nauplii (N1-N6). Ovigerous females
frequency was considered as an indicator for reproductive events
constancy, and to evaluate a possible source and sink dynamic
between the studied splashpools as well. Copepodite stages were
recognized by size and morphology, while nauplii were identified
from body shape and a maximum of four thoracic segments. 

Statistical analysis
Spearman rank correlation analysis were performed by the mean

of StatSoft STATISTICA 10 software. Boxplot presence/absence
analysis was performed in the R environment.

Results

Environmental parameters
Spatial and temporal variability of the supralittoral environment

was highlighted during the samplings; temperature and salinity data
are displayed in a T-S graph (Figure 2). Pool C showed wide mean
variability of environmental parameters, with peaks in salinity
(55.8±24.2‰), density (1035±15.6) and pH (8.4±0.5). Pool A,
showed wider oscillations during the sampling period (24.8±8.8°C).
The highest salinity value was reached in pool C with 90‰ (July
2014). Pool C also showed the lowest pH value (pH=7.3, July 2014).

TPM and chlorophyll resulted higher in pool C, where trophic
conditions seem to be more favorable for T. fulvus population, in
terms of quantity (mean 193 mg/L TPM) and quality (mean organic
particulate composition of 58.6%) than in Pool A (49.15 mg/L and
39.6%). Pool A population (Figure 3A) reached a top value of 424
individuals per liter (Ind/l) in April 2014, but it was nevertheless
recognized as the most scarcely populated pool, with a mean

population density of 155.6 Ind/l. Pool B and Pool C showed higher
mean population densities (285 ind/l and 448,9 ind/l, respectively),
but different population behaviors. Pool B population (Figure 3B)
reached a maximum of 1428 Ind/l (September 2014) and did not
show extinction events. Pool C (Figure 3C) reached the population
peak in September 2014 as well (1456 Ind/l), and the minimum in
August 2014 (136 Ind/l). Pool C went into extinction in the first two
weeks of July 2014.

Pool B showed significant reproductive events, where ovigerous
females almost reached the 50% of the total population (Figure 4);
pool A showed the highest (24.2%) mean value for this parameter.
Regarding Pool A population, the occurrence of ovigerous females
(Figure 4) was reported during all the examined period, nevertheless
the scarce mean density does not allow to highlight reproduction
events. Mean Spearman Rank analysis between population and
ovigerous females density highlights a high correlation (mean
rs=0.77, P<0.05).
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Figure 1. Study area map and splashpools distribution.

Figure 2. Temperature and salinity distribution in Pool A, B and
C (March-October 2014).

Non
-co

mmerc
ial

 us
e o

nly



[page 32]                                                  [Journal of Biological Research 2018; 91:7113]                              

Discussion

Meteorological parameters influence the supralittoral
environment, determining a wide variability of salinity, temperature
and general pools condition. Splashpools populations are influenced
by such parameters and by phytoplankton biomass availability.
Studies on Tigriopus brevicornis showed that this organism has a
wide tolerance toward environmental parameters variability, that
nevertheless affect copepod survival and development.29,30 It was
suggested that a considerable energetic cost is paid by the
supralittoral inhabitants to survive and fight environmental
changes.31 Tigriopus japonicus can survive at 1.8‰ water salinity ,
but the most suitable range for reproduction is between 27.1 and
34.3‰.32,33 The wide variability of environmental parameters may
overcome Tigriopus sp. survival mechanisms, such as osmotic,
temperature and desiccation tolerance, as it was observed in
Tigriopus californicus.34-36 On this latter species, a limit of
adaptation to raising temperatures was found, putting this well-
adapted organism under the climate change threat.16

The T. fulvus population in Genova Nervi (Ligurian Sea)
showed genus-typical adaptability to environmental variability.
Concerning the splashpools trophic conditions, Chla and TPM peaks
during April 2014 (Chla=98.32 mg/L; TPM=68.52 mg/L) and
September 2014 (Chla=98.32 mg/L; TPM=607.1 mg/L) matched
with T. fulvus population buildups; on the other hand, Pool C went
through a drying event which caused extinction of T. fulvus
population in July 2014. In comparison with data from 1987,12 the
results of this study show a decrease in mean T. fulvus population.
While older samplings highlighted a mean copepod density of

2699±1058 Ind/L from March to September 1987, the data from
2014 showed a density of 580±630 Ind/L; therefore, a fivefold mean
population density decrease occurred. The comparison between the
data of environmental parameters highlights a remarkable
temperature rise (mean=25.9°C, range=21.8 – 31.36°C) with respect
to the previous data from the same rockpool (mean=22.1°C,
range=16.5 – 27.0°C). Similar considerations can be made regarding
water temperature and density.12

Conclusions

Even though two points do not constitute a trend, especially in
a highly variable species, the first signs of a reached tolerance limit
must be considered, because of the assessed growth rate decrease.37

As already assessed,12 thermal tolerance is a crucial factor in
Tigriopus spp. survival in the natural environment. Despite genetic
adaptation and phenotypic plasticity that might buffer the adverse
effects of the environmental temperature increase, the response that
T. fulvus shows to climate change effects might not be sufficient to
overcome the subsequent stress.

All in all, T. fulvus presence in the three studied rockpools is
determined by a combination of the mentioned environmental
factors, as shown in the subsequent presence/absence analysis.
Primarily, as expected, splashpools water salinity affects T. fulvus
fitness and therefore its presence in the studied pools (Figure 5);
absence data of water temperature and salinity refer to small water
remainings that can be found under the bottom salt crust, no
copepods were present. A further environmental temperature increase
might affect the fitness of supralittoral organisms up to their tolerance
limit. Moreover, environmental temperature is correlated with pool
water evaporation and subsequent salinity increase, that might lead
to further distress for the resident populations (Figure 5).

Metapopulation structure has been already highlighted for T.
fulvus.15 If for T. brevicornis38 and T. californicus39 the individual
distribution and the subsequent splashpools colonization seem to be
affected by tidal activity, for T. fulvus this phenomenon is more
connected to sea storms and rainfall. The correlation between
populations B (r=0.81, P<0.05) and C (r=0.75, P<0.05) and
cumulate rainfall between samplings (Figure 6) highlighted between
March and September 2014 (Figure 3), could confirm this
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Figure 4. Ovigerous females percentage in Tigriopus fulvus pop-
ulations of pools A, B and C.

Figure 3. Percent composition of Tigriopus fulvus population cat-
egories in A) pool A, B) pool B and C) pool C coupled with total
individual density (Ind/l) in the sample (March-October 2014).
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hypothesis. Pool A lower population densities did not allow a
significant statistical data treatment.

The opportunistic behavior as r-specialist showed in this study
by the harpacticoid copepod T. fulvus seems to be triggered and
sustained by rainfall. T. fulvus survival during warmer months seems
to rely on several factors, as for this species lethal temperature and
salinity seem to be, moreover, directly correlated.40 In a context of
climatic changes, wild populations of extreme environments such
as splashpool copepods might be carefully monitored to locate
possible local climate change effects.
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