
Abstract 

Unhealthy alcohol use is common in the Western society, which puts
risk of health consequences, causing multiple behavioural injuries.
Increasing evidence focuses on acetaldehyde, the first metabolite of
ethanol, as the mediator of the several behavioural actions of alcohol,
including its rewarding and motivational effects. In particular,
acetaldehyde induces dopamine release in the nucleus accumbens
modulating primary alcohol rewarding effect, drug seeking, and
relapse behaviour. Recent behavioural studies point at acetaldehyde as
a drug of abuse since its oral self-administration is induced and main-
tained in an operant/conflict paradigm. These findings provide further
evidence on the role played by the acetaldehyde as a mediator of the
effects of alcohol and focus attention on this molecule to arrange a
more effective strategy, aimed at the prevention and treatment of alco-
hol abuse. Thus, the aim of this review is to summarize latest results
on the role of acetaldehyde as the mediator of ethanol-central effects
focusing on its capacity to induce an addictive behaviour. 

Introduction

Alcohol is regularly consumed, ranging from 8 to 10% of heavy alco-
hol use (an average of ≥14 drinks per week in males and ≥7 drinks

per week in females).1 Alcohol abuse represents a substantial and
growing health problem in Western societies and it is the third risk
factor for cardiovascular disease, cirrhosis of the liver and various
cancers (WHO). The central effects of alcohol (ethanol,  EtOH) are
mediated by the interaction with different neurotransmitters, ionic
channel, membrane proteins and receptors.2-4 EtOH abuse is associ-
ated with impairments of intellectual functions, memory, verbal and
non verbal learning, visual motor coordination, cognitive flexibility,
executive functions, problem solving, decision making, perception
and information processing speed. 5-11 In the last years, EtOH depend-
ence has been defined as a chronic relapsing and remitting disease,
and it is well known that EtOH is able to influence emotional behav-
iour and cognition in humans in a dose-dependent manner,12 time
and modality of administration.13 An important role in the neurobiol-
ogy of ethanol addiction is played by acetaldehyde (ACD), ethanol first
metabolite detected and analyzed by HPLC/MS, that allows a quantita-
tive and qualitative analysis.14,15 It derives from ethanol oxidative
metabolism, which occurs by peripheral alcohol dehydrogenase, and
by central catalase and CYP2E1.16-18 High blood levels of ACD enter
the brain, likely overwhelming the aldehyde dehydrogenase present
in the blood-brain barrier.19 Muggironi and collegues showed experi-
mental evidences on the involvement of ACD in the neurobiological
mechanism supporting the motivational effects of EtOH.20 Several
studies have recently focused on ACD as the mediator of rewarding
and motivational properties of EtOH.21,22 In particular, it has been
reported that ACD acts in the mesocorticolimbic system, affecting
dopamine (DA) neurotransmission with an increase of the neuronal
firing in the ventral tegmental area (VTA), stimulating DA release in
the nucleus accumbens (NAc) shell.23-25 In the last decades, several
research groups have focused their attention on the role of ACD as a
compound with potentially addictive effects, suggesting that ACD
itself mediates addiction and craving,8,26,27 thus playing a key role in
the development of alcohol dependence.28,29

Search methods

The authors’ search targeted evidence-based guidelines, evidence-
based summaries, systematic reviews and recent experimental
research on acetaldehyde formation in the brain and its role as the
mediator of ethanol-central effects. The keywords used were ACD or
ACD in the brain or dopaminergic pathway or EtOH-central effects or
ACD and EtOH-related addictive behaviour. Through this simple strat-
egy, we identified more than 10000 using two primary sources to iden-
tify relevant information: PubMed and Scopus (last accessed via
PubMed and Scopus on March, 2016).
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Role of acetaldehyde in addictive behaviour

The involvement of ACD as the primum movens of motivational and
addictive properties of EtOH has been postulated by experiments con-
ducted on manipulation of brain catalase activity. There is a positive
correlation between brain catalase activity and natural propensity to
drink EtOH in rodents, as shown by Amit and Aragon.30 In agreement
with past researches, these results confirmed that brain catalase activ-
ity and voluntary ethanol intake are unidirectionally and causally relat-
ed,31 suggesting that brain catalase activity may be part of an enzymat-
ic system, which controls the production and elimination of acetalde-
hyde in the brain.16,32 In particular, the administration of the irre-
versible inhibitor of catalase, 3-amino-1,2,4-triazole is able to decrease
EtOH intake, the induction of an ethanol-induced conditioning-taste
aversion to saccharine,31 and to antagonize ethanol-induced narcosis
and lethality in ethanol drinking rats.33-35 Experimental evidence sup-
ports the idea that ACD itself is able to induce addictive like behaviour
in rats. Indeed, early studies, have demonstrated that rats self-admin-
ister 1 to 5% (v/v) ACD directly into cerebral ventricles into VTA,28,36

and that its intracerebroventricular (icv) infusion induces condition-
ing-place preference.37,38 Rodd-Henricks and coauthors confirmed
these data, pointing out that ACD is able to induce a self-administra-
tion behaviour directly into VTA, in alcohol-preferring rats.29

Several studies highlighted the central effects and role of ACD in the
establishment and maintenance of addictive behaviour, even when
administered in rats, other than icv. Moreover, systemic ACD injections
induce significant stimulus preferences;37 intragastric administrations
produce conditioning-place preference,39 and rats self-inject ACD.40

Recently, Cacace and co-authors have investigated the ability of ACD to
induce and maintain oral-self administration behaviour in a operant
conditioning paradigm,8 and the induction of a relapse behaviour upon
the introduction of repeated deprivation phases. Furthermore, several
studies sustain the role of ACD as a drug of abuse, showing that ACD-
rats emitted a high number of lever presses during the extinction
phase, also that an increase in the lever presses during the reinstate-
ment one, moreover a higher emission of punished responses during
the conflict paradigm,22 sustaining that ACD itself is able to induce an
operant-drinking behaviour. 

These experimental evidence, in accordance with previous reports
and confirmed by further results,22,41 suggests that ACD may be consid-
ered as a drug of abuse. Sure enough, in an operant drinking behav-
iour, rats increase their ACD self-administration intake during rein-
statement, following periods of forced abstinence. Furthermore, they
increase lever presses for ACD when the reward is delivered together
with an aversive stimulus. These studies, taken together, show that
ACD is a strong reinforcer, whatever the route of administration is.

Behavioural effects of acetaldehyde

The impairment in learning and memory and cognitive functions,
induced by long-term consumption of EtOH, may be attributed to a neu-
rotoxic injury that induces a chronic degeneration of cholinergic basal
forebrain neurons, and hippocampal cholinergic function, comparable
to those observed in Alzheimer’s disease.42-44

ACD is generally considered responsible for the harmful effects of
EtOH occurring through modulation of neurotransmissions pathways
in the CNS.4,18,45-47 In particular, ACD induces perturbation of choliner-
gic neurotransmission,48,49 a considerable reduction in choline acetyl-
trasferase (ChAT) expression as a marker of acetylcholine (Ach)
expression, in the frontal cortex as well as in the hippocampus and

plays a role in the pathogenesis of Alzheimer’s disease.18,50,51 Jamal and
colleagues have analyzed the effects of acute intraperitoneal adminis-
tration of EtOH in Aldh2 knockout mice,52 a model of aldehyde dehydro-
genase 2 deficiency in humans, to elucidate the role of ACD in the per-
turbation of cholinergic function. The authors showed that EtOH
administration was able to induce a decrease in ChAT mRNA and pro-
tein levels in aldehyde dehydrogenase 2 knockout mice (Aldh2-KO) but
not in wild type mice, suggesting a role for ACD in the mechanism of
EtOH action. Moreover, it has been reported that ACD binds the
Apolipoprotein E, a protein directly involved in the alterations of brain
morphology and in learning and memory processes, promoting the for-
mation of adducts.53,54 In particular, a polymorphism of mitochondrial
aldehyde dehydrogenase gene (ALDH2 1/2 polymorphism) may cause
the accumulation of ACD which could have a role in Alzheimer’s dis-
ease, probably due to an altered modulation of the Apolipoprotein E.50,55

ACD induces different effects not only on cognitive function, in fact
several reports have showed that ACD central administration, or locally
formed ACD, is able to increase locomotor activity,56-58 while its
intraperitoneal injection induces locomotor stimulant effects.19

Moreover ACD administration in the hypothalamic arcuate nucleus, a
brain area known for its lower presence of ALDH, produces a long last-
ing induction of locomotion.58 Interestingly Escrig and coauthors have
found a relationship between anxiogenic effects produced by intraperi-
toneal high doses of ACD (100 mg/kg) and corticosterone levels,59 as
marker of endocrine responses, pointing out the role of ACD as media-
tor of EtOH consumption-induced stress response by.60,61 These find-
ings are corroborated by previous in vitro studies showing that the
inhibition of ALDH by cyanamid produces a significant increase in CRH
mRNA in the paraventricular (PVN) and propiomelanocortin (POMC)
mRNA in the anterior pituitary,62 and that ACD itself is able to induce,
in a dose-dependent manner, CRH release from incubated hypothalam-
ic explants.60 These findings can better clarify the implication of ACD
in the modulation of central neurotransmitters and peptidergic cir-
cuits, contributing to the onset and the maintenance of the emotional
and cognitive effects induced by alcohol consumption. Furthermore, in
the last year many researches point out to the attention on the role
played by the endocannabinoidergic system in the modulation of
ethanol-related central effects. Endocannabinoids (ECs) through the
activation of the cannabinoid receptor 1 (CB1) broadly localized in the
CNS, cause presynaptic inhibition of neurotransmitters release, such
as gamma-aminobutyric (GABA),63,64 influencing dopamine transmis-
sion in the ventral striatum, amygdala and anterior cingulate cortex
modulating the motivation approach towards substances of abuse. In
particular the antagonist of ECs are able to reduce motivational and
reward properties of ACD as mediator of ethanol addiction.22

Conclusions

In the last years, several data commented the possibility that ACD
may actually initiate and perpetuate EtOH reinforcement. Furthermore,
different researches address the attention to the pivotal role of ACD in
the modulation of the central effects of EtOH, since it mediates its con-
sumption, tolerance and reinforcement. ACD might constitute the first
hit in EtOH reinforcement, able to establish and maintain addictive
behaviour, involving DA transmission in direct and indirect ways. This
highlights the relationship and degree of overlap between acetalde-
hyde’s addictive, emotional and cognitive properties. It suggests the
real contribution of ACD in central effects of EtOH, driving the studies
on ethanol metabolism. This may clarify the elements of individual vul-
nerability to alcohol addiction to arrange effective strategies aimed to
prevent and treat alcohol abuse.
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