Venous compliance and clinical implications

Main Article Content

Paolo Zamboni *
Valentina Tavoni
Francesco Sisini
Massimo Pedriali
Erika Rimondi
Mirko Tessari
Erica Menegatti
(*) Corresponding Author:
Paolo Zamboni | paolozamboni@icloud.com

Abstract

Compliance is a characteristic of every deformable system. Compliance is very clear concept in physics and mechanics but in clinics, perhaps, is not the same. However, in veins compliance fits perfectly with the function of drainage of the venous system. Volumetric increase (dV) of the content is correlated with pressure increase (dP) inside the vein according to the equation C’= dV/dP. In humans 75% of the blood is located in the venous system, primarily because the molecular components of a vein media layer is significantly more compliant to that of arteries. This property is fundamental to understanding the change in blood volume in response to a change in posture. Measurements of venous compliance in clinical practice can be done by the means of ultrasound, as well as with the plethysmography. Ultrasound methods assimilate the cross sectional area to the volume of the vein, because it reflects the blood content. Changes in cross sectional area can be reliably measured in response to a change in posture, while pressure can be derived from the hydrostatic pressure changes. Venous compliance is of paramount importance also in pulsatile veins such as the inferior or superior vena cava and the jugular veins, where high resolution ultrasound may accurately derive the cross sectional area. Clinical implications of the mechanical properties of the venous wall are extensively discussed, including the need of dedicated venous stenting, which takes into account venous compliance as the main parameter of the venous function. In addition, venous compliance is the interpretative key for a better understanding of plethysmography curves, as well as of varicose veins and of their return to normal cross sectional area following ambulatory venous pressure reduction.

Downloads month by month

Downloads

Download data is not yet available.

Article Details