Associations of anterior accessory or thigh posterior tributary and great saphenous reflux patterns in early stages of chronic venous valvular insufficiency

Carlos Alberto Engelhorn,1,2 Ana Luiza Dias Valiente Engelhorn,1,2 Sergio Xavier Salles-Cunha,2 Carolina B. Andreatta,1 Daniella B. Santos,1 Gustavo T.M. Nakata,1 Fernando A. Haida1

1Pontificia Universidade Católica do Paraná, School of Medicine; 2Angiolab-Laboratório Vascular Não Invasivo, Curitiba, PR, Brazil

Abstract

Varicose veins are a common disorder. Extensive ultrasound (US) mapping of lower extremity chronic venous valvular insufficiency includes the great saphenous vein (GSV), anterior accessory saphenous vein (AASV) and thigh posterior tributary to GSV such as the posterior accessory saphenous vein (PTSV, PAV). The aim of this study was to determine associations between GSV-AASV-PTSV (including PAV) reflux in a specific sample population of Southern Brazilian women, mostly euro descendents, with telangiectasias, reticular veins, varices and/or intermittent edema. US performed in 1016 extremities of 513 women, 43±18 (18-81) years old were included. Women with previous venous thrombosis, surgery, suspicion of pelvic congestion syndrome, and men were excluded. Small saphenous vein and related thigh veins were excluded from analysis. GSV-AASV-PTSV reflux patterns were analyzed; prevalence was compared using χ² statistics. Reflux prevalence in AASV and/or thigh PTSV was 5.8% (59/1016): 1.3% at PTSV (n=13) and 4.5% at AASV (n=46), significantly lower than GSV reflux: 72% (n=727) (P<0.001). AASV and/or PTSV reflux was associated with GSV reflux (81%, n=48/59); common pattern was diffuse reflux, starting at AASV/PTSV saphenous junctions (56%, n=33/59); otherwise, short, non-diffuse reflux was noted in part of the AASV/PTSV evaluated. Isolated AASV or PTSV reflux was rare (1%, n=1/1016): 9 at the AAS, and 2 at the PTSV. US mapping of AASV/PTSV in early stages of disease, in women without pelvic congestion syndrome, increased reflux detection by 1%, and improved definition of reflux patterns in about 6% of the extremities.

Introduction

Varicose veins and telangiectasias, associated with chronic venous valvular insufficiency (CVVI) of lower extremities, are common and deserving special attention. CVVI is a common subset of chronic venous insufficiency (CVI). Modern tendency is to become more specific on phlebologic investigation. The focus of this work was on CVVI exclusively, to avoid confusion with thrombosis or malformations. The following paragraphs summarize the focus on early CVVI, introduce our great saphenous vein (GSV) reflux findings in early stages of disease, and questions if we should evaluate the anterior accessory saphenous vein (AASV) and thigh posterior tributaries (PTSV) such as the posterior accessory saphenous vein (PASV) in patients with aesthetics more so than pathophysiological conditions.

An international consensus created the clinical, etiological, anatomic and pathophysiological classification (CEAP). CEAP has improved description of populations studied but investigation of specific subgroups is needed. We have focused on women with early stage. GSV reflux has been related to its diameter. Patterns of saphenous vein reflux were created, improving communication with referring physicians. These patterns specified reflux sources and drainage points. Tributaries were more associated to GSV reflux than perforating veins in C1-C2 women. Most GSV reflux in C2 women was segmental, from one tributary to another. GSV reflux was mostly in the leg, rarely in the saphenofemoral junction (SFJ). Telangiectasias were associated to segmental saphenous vein reflux. Segmental reflux, if not treated, evolved to multi-segmental saphenous reflux.

Non-saphenous vein reflux has received its due attention. Reflux in gluteal, lateral or anterior thigh, or pubic veins raise suspicion of pelvic varicosities, particularly in the presence of symptoms of pelvic congestion syndrome. Patients with suspected pelvic varicosities were not included in this analysis.

Thigh accessory or tributaries to the GSV may be associated with saphenous or non-saphenous reflux. Most findings already described, however, were noted in patients with long-term CVI. The present analysis focuses on ultrasound (US) of the AASV and PTSV in women with early telangiectasias, reticular veins, varicose veins and/or intermittent swelling.

Materials and Methods

Patients were referred by a variety of specialists to an ISO accredited noninvasive vascular laboratory, Angiolab-Curitiba, of a major city in Southern Brazil. Venous duplex examinations were pre-approved by insurance companies. A data base has been maintained prospectively. Retrospective analysis of GSV, AASV and PTSV patterns of reflux was performed. This project was part of protocol number 207-0084-000111 of the National Commission on Ethics in Research and approved by the Ethics Research Committee of Pontificia Universidade Católica do Paraná.
Inclusion criteria

Women with telangiectasias or reticular veins (CEAP clinical class C1), varicose veins (C2), or intermittent swelling (suggested C3A versus constant C3 edema) were candidates for the study. Etiology (E) was primary; anatomy (A) included superficial veins of the thigh; and pathophysiology (P) was reflux only. Data entry stopped when over 1000 extremities were posted.

Exclusion criteria

Exclusion of all men avoided gender variability. Women with constant, chronic edema, skin changes, and healed or open ulcers (C3, C4A, C4B, C5, C6), history of previous deep venous thrombosis (DVT), suspicion of pelvic venous insufficiency, venous malformations, and/or previous direct treatment of lower extremity veins were excluded. Exclusion based on treatment included surgery, minimally invasive thermal ablation, and chemical ablation with foam or sclerosant.

Venotonics were also excluded. Compression stockings, or deep venous reflux due to valvular insufficiency only were not reason for exclusion.

Small saphenous veins (SSV), absent, or other leg veins besides GSV were not analyzed.

Patient population

US data from 1016 limbs of 513 women, 43±13 (range 18-81) years-old, were analyzed. Patients represented an educated, middle class of Southern Brazil, mostly European descendants, from Portuguese, Spanish, Italian, German, and Ukrainian ancestry. This sample population did not represent the Brazilian multi-ethnicity, neither the various social classes. Specifically, rural or community groups were not represented. The women evaluated had aesthetic and/or functional interests; visual appearance, itching or slight burning sensation were common causes to seek medical attention. Clinical presentations C1-C2 and suggested-C3A, intermittent swelling, and/or malformations were ruled out with the patient supine or standing. Superficial venous mapping was performed in the standing position. Patient movement and periods of rest avoided fainting. Examinations lasted around 40 min. Valsalva or Valsalva-like maneuvers such as talking and laughing were employed according to individual behavior. Muscle and venous compression maneuvers were performed manually, proximal and distally to probe placement. Backflow causing venous filling was commonly tested with multiple compression maneuvers to avoid false reflux data. Reverse flow through potentially normal, valveless, limited saphenous segments, however, was reported if a draining tributary had reflux; apparently normal drainage via a perforating vein was described as reflux, particularly if a diameter dilatation was noted in such segment. Short reflux segments, as short as 4 cm, were detectable with this compression technique. This approach emphasized testing variety and completeness, taking into consideration that daily life conditions were difficult to be reproduced in the vascular laboratory. Local changes in venous diameters were noted. Segmental reflux was recorded with information about source and drainage points. According to the original concept, reflux lasting less than 0.5 s was normal. Consequently reflux lasting longer than 0.5 s was considered not normal. Superficial vein reflux lasted longer than 1 s in most cases.

GSV and its tributaries were evaluated from the groin to the ankle. Although modern consensus mandates that the GSV term be used for the vein within the saphenous compartment, long, GSV reflux patterns may have included small tributary segments outside the saphenous compartment. Diffuse GSV reflux included either the GSV proper in the calf or the posterior or arch-posterior accessory vein extending to the ankle level. In general, the SFJ defined common femoral yes-or-no source of reflux and GSV yes-or-no reflux from a source at or near the junction. The superficial epigastric vein is an example of a non-common femoral source of GSV reflux. Non common femoral reflux source, however, was expected to have low prevalence in the population studied.

GSV reflux patterns as shown in Figure 1: i) segmental if from a tributary or perforating vein distal to the SFJ to a tributary or perforating vein proximal to the ankle; segmental reflux is most common in the calf than in the thigh or knee; ii) distal from a tributary or perforating vein to the ankle; iii) multi-segmental with two or more distinct refluxing segments but a normal SFJ; iv) multi-segmental with reflux at the SFJ; v) proximal from the SFJ to a tributary or perforating vein at the thigh or calf above the ankle, having a normal distal segment; vi) diffuse throughout the entire vein, from SFJ to the ankle; vii) perijunction if nonfemoral-saphenous, femoro-nonsaphenous, nonfemoral-nonsaphenous reflux at the junction; or viii) no reflux.

AASV and PTSV were investigated in the thigh. The AASV drained the anterior surface of the thigh, running parallel to the GSV, into the saphenous-femoral junction. AASV alignment with the femoral artery and vein were searched for proper identification. The PTSV, including PASV, drained the posterior surface of the thigh into the proximal GSV segment. A classical, noticeable, predominant Giacomini vein from the SSV to the GSV was not part of PTSV statistics in this study. The PTSV included as such in this study drained primarily the posterior thigh. Origin and drainage of varicose veins were noted. Usual mapping included dis-
tances from source and drainage points of reflux to anatomic landmarks.

AASV and PTSV reflux were classified as diffuse or non-diffuse. Diffuse AASV reflux, throughout the vein segment studied, started at the femoral junction and continued at least to the mid-distal thigh or knee. Non-diffuse reflux occurred in segments shorter than the venous segment studied. PTSV reflux was diffuse if included the junction to the GSV and extended distally for the entire segment evaluated, usually to mid-distal thigh. PTSV reflux was non-diffuse if shorter than the venous segment evaluated. Figure 219,21 diagrams common configurations. Figure 3 exemplifies AASV reflux at the femoral junction.

Statistics

Descriptive statistics indicated frequency or prevalence of GSV, AASV and/or PTSV reflux. Prevalence was compared using \(\chi^2 \) statistics from Excel files.

Results

This session describes patterns and prevalence of GSV, AASV and/or PTSV reflux, and the relations between AASV or PTSV and GSV patterns of reflux.

Prevalence of great saphenous vein, anterior accessory saphenous vein and posterior tributary saphenous vein reflux

All GSV were examined. There were high percentages of insignificant or undetected AASV or PTSV; AASV and PTSV were evaluated for reflux in 40% (406/1016) of the limbs: AASV in 34% (348/1016), a PTSV in 9% (88/1016), and combined in 3% (30/1016) of the extremities.

Reflux was most prevalent in the GSV, 72% (727/1016), then in the AASV, 4.5% (46/1016), and least prevalent in PTVS, 1.3% (13/1016) (P<0.001 for all comparisons). Percentages of reflux per AASV or PTSV examined were 13% (46/348) and 15% (13/88) respectively.

Total prevalence of reflux in either GSV, AASV and/or PASV was 73% (738/1016). Single or multiple locations of reflux were: i) GSV only: 679 limbs (66.8% of 1016 limbs); ii) AASV only: 9 limbs (0.9%), 3 with diffuse and 6 with non-diffuse reflux; iii) PTSV only: 2 limbs (0.2%) with non-diffuse reflux; iv) GSV and AASV: 37 limbs (3.6%), 23 with diffuse and 14 with non-diffuse AASV reflux; v) GSV and PTSV: 11 limbs (1.1%), 7 with diffuse and 4 with non-diffuse PTSV reflux; vi) AASV and PASV: 0; vii) GSV, AASV and PASV: 0 limbs; and viii) no reflux in the GSV, AASV and PTSV: 278 limbs (27%).

Non-diffuse reflux predominated in cases of isolated AASV or PTSV reflux, 73% (8/11) vs 27% (3/11) with diffuse reflux (P=0.03).

Patterns of great saphenous vein reflux

Prevalence of GSV flow or reflux patterns were, from most to least common: i) segmental reflux, 32.0% (n=325/1016 limbs); ii) no reflux, 28.4% (n=289/1016); iii) multi-segmental reflux with normal SFJ, 11.8% (n=120/1016); iv) proximal, 8.8% (n=89/1016); v) distal, 8.0% (n=81/1016); vi) multi-segmental reflux with SFJ reflux, 7.3% (n=74/1016); vii) diffuse reflux, 3.1% (n=31/1016); and viii) peri-SFJ reflux, 0.7% (n=7/1016).

Segmental or multi-segmental reflux patterns with normal SFJ were noted in 44%
Patterns of anterior accessory saphenous vein reflux

Prevalence of AASV flow or reflux patterns were, from most to least common: i) insignificant flow or size, 65.7% (n=668/1016); ii) no reflux, 29.7% (n=302/1016); iii) diffuse reflux, 2.6% (n=26/1016); and iv) non-diffuse reflux - segmental away from the junction or short proximal segment, 2.0% (n=20/1016).

Patterns of posterior tributary to saphenous vein reflux

Prevalence of PTSV flow or reflux patterns were, from most to least common: i) insignificant flow or size, 91.3% (n=928/1016); ii) no reflux, 7.4% (n=75/1016); iii) diffuse reflux, 0.7% (n=7/1016); and iv) non-diffuse reflux – segmental away from the junction or short proximal segment, 0.6% (n=6/1016).

Relations between anterior accessory saphenous vein and great saphenous vein reflux patterns

Table 1 shows cross-tabulation between patterns of reflux in the AASV and GSV. Distribution of GSV reflux patterns was significantly different as a function of AASV patterns (P<0.001, χ² applied to 4 ¥ 8 data of Table 1).

Diffuse AASV reflux was associated with higher prevalence of SFJ reflux.

Some two-by-two comparisons provided the following statistics: i) diffuse AASV plus SFJ reflux showed significantly higher prevalence, n=14 of 26 (54%), than the expected prevalence of approximately 20%, n=5, as shown in Table 2 (P<0.001); and ii) non-diffuse AASV plus SFJ reflux showed a real prevalence, n=4 of 20 (Table 1), equal to the expected prevalence of 20% (P=0.98).

Relations between posterior tributary to saphenous vein and great saphenous vein reflux patterns

Table 3 shows cross-tabulation between patterns of reflux in the PTSV and GSV. Distribution of GSV reflux patterns was significantly different as a function of PTSV.
patterns ($P=0.17$, χ^2 applied to 4×8 data of Table 3).

Summary

The population studied had a prevalence of 73% (738/1016) of reflux in the GSV and thigh AASV, PTSV. Reflux prevalence was 72% (727/1016) in the GSV, 4.5% (46/1016) in the AASV, and 1.3% (13/1016) in PTSV. Testing for AASV and PTSV reflux increased detection of reflux by 1% (11/1016) and improved definition of patterns of reflux in 5.8% (59/1016) of the lower extremities. AASV diffuse reflux correlated with a 2.5 times higher prevalence of GSV-SFJ reflux than expected in general (54% vs 20%).

Discussion

We emphasized ultrasound findings in early stages of CVVI in women. CVVI emphasizes valvular insufficiency, not highlighted when the CVVI expression, that includes thrombosis, is used. Attention to CVVI increased with development of minimally invasive thermal and chemical ablation treatments such as laser or radio frequency and foam sclerotherapy.1,3,6,7,12 Advances in duplex-Doppler ultrasoundography have contributed to CVVI understanding, diagnosis, treatment and follow-up.1,3,6,7,11,12,20,21,24

International consensuses occurred to minimize confusion in past phlebologic literature.1,3,6,7,10 Description of patient populations studied improved but studies of even more specific sample populations, based on gender for example,3,15 should be promoted. Any venous segment could become an initial source of reflux and varicose veins. Segmental GSV reflux from a tributary source to a tributary drainage is the most common. A perforating vein source of reflux is not common finding in early stages of disease. Perforating vein drainage was considered reflux, particularly if segmental diameter changes were noted at source and drainage points. Segmental reflux propagates mostly to multi-segmental reflux if not treated; reflux evolves from the weakest to the next weakest point, regardless of anatomic relationships. We investigated if AASV or PTSV could be weak sites for reflux development early on. PTSV were originally interpreted as the posterior accessory saphenous vein; but this specific interpretation has been questioned leading to a more general PTSV description.

Most prevalence data represent a select clinic group and not the population in general. The sample in this study had GSV reflux with similar prevalence (72%) as previously reported for a varicose vein C2 group (77%), almost double than reported for a telangiectasia C1 group (44%).5,6 Saphenofemoral junction reflux is uncommon in early stages of disease; previously published prevalence in women with varicose veins or telangiectasias was less than 20%,13 the prevalence found in the sample population of this study (Table 2). Reflux at the AASV contributed to SFJ reflux; SFJ reflux prevalence almost tripled in cases of diffuse AASV reflux (Table 2). García-Gimeno described AASV reflux prevalence over 10% for a sample population with over 60% SFJ reflux,22 a group apparently with more advanced disease than the one in this work. Determination of terminal valve patency is significant to design type of treatment.21

Brazilian custom is to treat telangiectasias and small reticular veins with 75% dextrose liquid sclerosant. Modern tendency includes foam sclerotherapy with polidocanol for relatively larger veins. Advanced technology has been implemented in clinics specialized in both symptomatic and aesthetic phlebology.25-29 Cold air sedation, laser ablation and liquid sclerosis with 75% dextrose have been combined to treat small veins, resulting in the Cryo Laser and Cryo sclerotherapy or CLaCs technique.26 This procedure is guided by a near infra red imaging Vein Viewer (Luminext Co, Memphis, TN, USA).27 This device colors over the skin more superficial veins than noted by the human eye or detected by US. The technique denominated augmented reality shows small nutrient veins underneath telangiectasias consistently.28 Results of the CLaCs technique were reported at the 2013 International Union of Phlebology (UIP) meeting showing improvement of skin conditions with 1% of the patients complaining of hyperpigmentation.29

In this investigation, we focused on AASV and PTSV, not frequently included in CVVI studies. AASV and PTSV rarely were the initial location of reflux in C1-C2-C3A women. Our and Seidel's data suggested propensity for early reflux and varicosity abnormalities more so in the calf than in the thigh.5,6,24 Calf veins other than the GSV were not included in this analysis. Above-knee source of SSV reflux was expected to be less than 3% in C2 women.5

Saphenous accessory and tributary veins in the thigh are less vulnerable to hydrostatic pressures and kinetic energies than the great saphenous and the veins in the calf. Approximately 1 in 17 extremities tested may have AASV or PTSV reflux. On another angle, 1 in 100 extremities may have only AASV or PTSV reflux. If the goal is to detect CVVI early to follow or treat patients, AASV and PTSV should be evaluated despite low reflux prevalence.

Significant changes in patterns of reflux are expected if a woman presents with pelvic congestion syndrome.17 Veins in all anatomic regions of the thigh have been evaluated if pelvic venous reflux is suspected, particularly if thigh varicosities are present. These patients, however, were excluded from this early stage of disease study. Also, the prevalence described herein cannot be applied to men in general or women C4, C5-C6 or even true C3 with constant edema.

In summary, it was reconfirmed that most women with early stages of CVVI had segmental or distal GSV reflux not involving the SFJ. Furthermore, prevalence of AASV or PTSV reflux was low, and mostly associated with GSV reflux. AASV or PTSV localized reflux, however, was the only abnormality detected in 1% of the extremities. US of these veins altered reflux pattern definition in about 6% of the extremities, and AASV diffuse reflux indicated more prevalence of SFJ reflux in the affected GSV.

References

