What are the ideal characteristics of a venous stent?

Ilaria Massi, Paolo Zamboni
Center for Veins and Lymphatics Diseases, University Hospital of Ferrara, Cona (FE), Italy

Abstract

Historically, the stents used in the venous system were not dedicated scaffolds. They were largely adapted arterial stents. An essential feature of a venous stent is compliance, in order to adapt its cross-sectional area to the vein. It should also be crush resistant, corrosion resistant and fatigue resistant. The material should be radiopaque, for follow-up. Another characteristic of the ideal venous stent is flexibility, to adapt its shape to the vein, not vice versa. The scaffold should be uncovered too, in order to avoid the occlusion of collaterals. The ideal venous stent should not migrate, so it is necessary a large diameter and a long length. The radial force is important to prevent migration. However, current stents derived from arterial use display high radial force, which could affect the patency of the thin venous wall. Alternatively, if the stent has an anchor point, that permits a passive anchoring, the radial force required to avoid migration will be lower. Dedicated venous stents were not available until very recently. Furthermore, there is a preclinical study about a new compliant nitinol stent, denominated Petalo CVS. Out of the commonest causes of large veins obstruction, dedicated venous stents could also treat other diseases described more recently, such as the jugular variant of the Eagle syndrome, JEDI syndrome and jugular lesions of the chronic cerebrospinal venous insufficiency that result unfavorable for angioplasty according to Giaquinta classification.

Introduction

Unlike arteries, veins have higher compliance, while the pressure is lower. Postural changes, respiratory and cardiac cycle, outside and inside pressure modify the cross-sectional area of the veins. Unlike the arteries, the venous vessels have valves to prevent reflux. Chronic obstructive venous disease can be caused by non-thrombotic vein lesions, because of extrinsic compression, such as in the May Thurner syndrome, or endoluminal defects, e.g. stenosis because of congenital defects, or by post-thrombotic fibrosis inside and around the vein. This lesion is different from the atherosclerotic one. So there are differences between arterial and venous diseases (Table 1). Therefore, stents must not be the same.1-3

There are more studies about the arterial system than the venous system. The stents currently used in the venous system are not dedicated scaffolds, because they are arterial stents, modified to have more flexibility. They keep, however, a high radial-force and an unchangeable cross-sectional area.1,4,5

The high pressure and the compromised return of blood through several mechanisms are the most important elements that cause obstructive venous disease.6,7 Chronic venous insufficiency due to obstruction can be treated with percutaneous balloon angioplasty and stenting.8 In the past endovenous balloon angioplasty was the most important method to treat occlusive venous disease. It is a safe, minimally invasive technique, but with a low patency rate. So clinical improvement is shorter than expected.9-12

Currently, occlusive venous disease can be treated with a stent.9-13 Venous stent is safe, effective and minimally invasive.7,11-12,14-31

Early complications, such as hematoma, arterial injury, pseudoaneurysm, nerve injury, are infrequent (<1%).18 The stent’s fracture in the venous system is uncommon.16 A meta-analysis about the patency rate after ilio-caval stent angioplasty reveals that the primary and secondary patency is 96% and 99% for non-thrombotic and 79% and 94% for chronic post-thrombotic.3,12,23 In the jugular system the rate of thrombotic complication is higher when arterial-derived stents have been implanted. Internal jugular vein thrombosis rarely follows balloon angioplasty, while int strut thrombosis occurs in 1.6% of the cases.19-20,32 Internal jugular vein thrombosis is often an underestimated clinical problem, and its more common symptoms are neck pain and headache.32 Another long-term complication can be represented by fibrotic tissue that causes extrinsic compression and stent migration.18

Currently, the most important stent used in venous surgery is the Wallstent.4 Quite recently other venous stents became available on the market, such as Zilver Vena stent, Vici venous stent and Sinus venous stent.27,33-36

Venous stent versus arterial stent

Stents used in the venous system are largely ideated to treat arterial disease. The knowledge derived from the arterial experience is useful, but endovascular venous techniques cannot be the same because of differences between arteries and veins. The ideal characteristics of a venous stent are known (Table 2).3-4,11,22,37

The principal aim of a venous stent is to decrease venous hypertension and re-establish physiological blood flow.1,2,4,11,22,35,38,39

Venous scaffold must have a larger diameter and longer length than the same stent used in arteries, to prevent recoil. The oversized diameter increases the radial force, which helps to anchor the stent passively. Currently, the diameter of the stents is 2-4 mm oversized. Venous blood pressure is lower than in arteries, so the radial force should be higher to prevent migration. However, current stents derived from arterial use display high radial force, which could affect the patency of the thin venous wall. The high radial force can cause inflammatory response and fibrosis. Alternatively, if the stent has an anchor point, that permits a passive anchoring, the radial force required to avoid migration will be lower and the risk of myointimal hyperplasia and restenosis will decrease too.1,2,4,11,22,35,38,40,41

Undersized stent and residual stenoses at the inflow or outflow segments can induce significant complications, such as chronic occlusion or persistence of symptoms.1,3,42 The ideal venous stent has not instent restenosis.4 In 3.5%-10% of cases the large diameter of the stent promotes a permanent over dilatation of the vein that
A venous stent should be a modification of arterial stent into the venous system. The material should be radiopaque, to make it visible by computed tomography. It should be crush-resistant too. The ideal venous stent is compliance, to adapt its cross-sectional area to variation of the body, which induce a continuous modification of hydrostatic pressure, and systemic conditions. Some veins are subjected to pulsations, such as the internal jugular vein. This phenomenon, called jugular venous pulse, is represented by the changes in cross-sectional area. It is generated by atrial pressure during the cardiac cycle, and it is transmitted along the vein. The jugular venous pulse is composed of three positive (a, c, v) and two negative waves (x, y). The higher positive wave is a, which corresponds to the p wave of the ECG, and it is caused by the atrial contraction. The following waves are c, x, v, and y, respectively caused by the tricuspid closure (c), its downward movement (x), the ventricular contraction (v) and the opening of the tricuspid valve (y). An essential feature of a venous stent is compliance, to adapt its cross-sectional area to variation of the body. The venous wall decreases because of the placement of arterial stent into the venous system. Venous stents are placed with overlaps, to cover the entire length, but it induces rigidity.

In the arterial system, stenting across joints should be avoided because of the risk of fracture, while in the venous system there is not data of stent’s fractures in the same segment. The placement of a venous stent across the inguinal ligament should represent a risk factor for early restenosis. In the cervical region, the venous stent’s fracture could be induced by the large movements of the head and the strong muscles.

Another characteristic of the venous stent is flexibility. Ideally, the scaffold should adapt its shape to the vein, not vice versa. The stent is often quite rigid, because flexibility isn’t an important feature in the arterial stent. It causes the vein’s straightening and it is not safe. The ideal venous stent should be both flexible and with sufficiently high radial force.

The material should be radiopaque, to follow-up through magnetic resonance and computed tomography. It should be corrosion resistant and fatigue resistant too.

The venous stent should be uncovered, in order to avoid the occlusion of collaterals.
Dedicated venous stents

Venous stents were not available until very recently. For example, Zilver Vena stent, Vicl venous stent and Abre venous self-expanding stent are specific for the venous system.4,27,34 There is a preclinical study about a new venous scaffold implanted in the porcine internal jugular vein (IJV), that is a compliant nitinol stent, denominated Petalo CVS (Figure 1).40

This scaffold has a particular shape, that permits to anchor the vein wall only at the extremities. Its radial force is enough to avoid migration, but it does not cause myointimal hyperplasia. The diameter in the distal part of the stent is smaller than that near the heart, to comply with the veins’ anatomy. Thanks to its characteristics, it preserves the venous compliance and the trauma of the vein’s wall is extremely low. So the inflammatory response to the placement of the stent is highest after three months and then decreases over time.9,40 After three months a neo-intimal tissue covered up the stent’s extremities, while the central part was surrounded after six months (Figure 2).9,40

New areas of application

There are in the literature some cases of venous obstruction described recently, that could be treated efficiently with a dedicated venous stent.

One of these is the jugular variant of the Eagle syndrome, caused by the elongation of the stylloid process that compresses the IJV.40 Another one is JEDI syndrome, where the IJV is subjected to extrinsic and bilateral compression by the omohyoid muscle.40 A dedicated venous stent could also treat the jugular lesions of the chronic cerebrospinal venous insufficiency (CCSVI) that result unfavorable for balloon angioplasty according to Giaquinta classification.50,51 These syndromes are characterized by extrinsic compression, caused by different elements and they could be eligible for venous stenting.4,9,49,51

Conclusions

Occlusive venous disease can be treated with a stent.9,11 Venous stents are safe, efficacy and minimally invasive, but historically they are not designed for the venous system. Dedicated venous stents were not available until very recently.4,9,27,33-36,40 The preclinical study about a new scaffold, denominated Petalo CVS, has been shown that it could have the ideal characteristics of a venous stent, but it is necessary a first in man study to affirm it.9,40

References

