
Summary

Several bacteria such as Flavobacterium, Serratias,
Chromobacterium and Streptomyces that produce different pig-
ments are playing a significant role in various fields of sciences.
Alternatively, current knowledge about bacterial pigments is lim-
ited to medical bacteriology, for instance their importance in viru-
lence factors and protective features, however recently the inves-
tigators have revealed the supplementary consequence of pig-
ments in food, textile and pharmaceutical aspects.

Introduction

The pigments play a critical aspect amongst various organisms
in environmental interactions fields, difference in gender and the
presence of some special features. However, the existence of pig-
ments’ variation in micro-organisms is considered to be in relation
with the evolution of the selective pressures (18). Pigments have
an important role in physiology and molecular process of microor-
ganisms; for example, assist in adapting to environmental condi-
tions, sunlight protection, photosynthetic or in the classification
and taxonomy of bacteria (54). The name of bacterial pigments is
often derived from the microorganism’s name, in which
Rosenbach (1884) proposed the golden pathogen and non-pig-
mented staphylococci as S. aureus and Staphylococcus albus

respectively. Also, the rarely found blue-green Pseudomonas
species in cystic fibrosis patients were called Pseudomonas aerug-
inosa, which is mainly Latina and means a rusty copper color (18).
The purpose of this review is about pigments various roles in bac-
terial function and also in different sciences such as chemistry,
biotechnology and pharmaceutical industry.

The chemical composition of pigments
and growth conditions

Pigments diversity depends on differences in their chemical
structure and also the presence of special chromophores (10). An
unsaturated organic molecule contains a group of single or double
bonds that serves the changes of light absorption to lower frequen-
cies (longer wave lengths). The presence of these substances,
results in the creation of the desired color. Indeed, the assortment
of these materials, which is commonly called root color, creates
the extended spectrum colors like Beta Carotene, Lycopene and
Anthocyanin (64). Pigment production and biosynthesis are asso-
ciated with a variety of factors like the environmental and culture
conditions, PH, inorganic phosphate concentration, temperature,
etc. (75). For instance production of prodigiosin pigment will
increase in Peptone Glycerol Broth and Nutrient Broth from 28°C
up to 30°C (20,37).

Pigment-producing bacteria

Some of the most important pigment-producing bacteria are:
Agrobacterium aurantiacum, Serratia marcescens, Chromobac-
terium violaceum, Micrococcus spp. and Pseudomonas aeruginosa.
According to the conducted investigations, Gram-negative bacilli
produce a wide range of bacterial pigments (57).

Important pigments produced by bacteria

Some of considerable pigments which are produced with bacte-
ria are as follow: Zeaxanthin, the yellow pigment of
Flavobacterium sp, Astaxanthin the pinkish pigment of
Agrobacterium aurantiacum, Yellow carotenoid pigment of M. var-
ians and M. luteus, Orange carotenoid pigments in M. nishi-
nomiyaensis, Pink carotenoid pigment in M. roseus and M. agilis,
Prodigiosin, the red pigment in Serratia marcescens and other bac-
teria, Violacein, the purple pigment in Iodobbacter,
Chromobacterium violaceum, Janthinobacterium, Pyocyanin, the
blue-green pigment in Pseudomonas aeruginosa and Actinorhodin,
the blue pigment in Streptomyces coelicolor (4,36,53,62,73).
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The pigments performance and features

Recently, the usages of pigments in a several range of indus-
tries (food industry, intinction and drug production) have been
increased (70). Natural colors can be obtained from sundry
sources, including ore, insects, plants and microbes in which the
plants and microorganisms are the most useful, because of their
sustainability in color production and culture situation (3,29,35).
Among microbes, bacteria are especially regarded for their highest
potential. So producing and also using of bacterial pigments as nat-
ural colors have been studied by many researchers, although this
issue is currently considered as one of the studied fields for differ-
ent industrial purposes (13,16,24).

Protective aspect
Protecting against heat and cold, UV ray and also containing

anti-microbial, anti-cancer and anti-oxidant properties (30).

Food industry
Usage of natural colors in the food industry has been increased

generally. These pigments have been replaced by synthetic dyes
(5). Some microorganisms that are capable for producing high effi-
ciency pigments are as follow: Monascus, Serratia, Paecilomyces,
Cordyceps and Streptomyces (60). It should be noted that
Riboflavin, Beta-Carotene and Phycocyanin have high perform-
ances in traditional fermented food industry (63).

Pharmaceutical industry
Many of bacterial pigments have been respected as antibiotics

and immunosuppressive agents due to their high clinical and
research potentials or for treating a variety of diseases such as can-
cer, leukemia, diabetes that can be noticed as below.

Anthocyanins

A flavonoids water-soluble pigment, with a wide range of bio-
logical activities consists of antioxidant, reduction of the risk of
cancer, regulation of the immune response as well as reduction of
inflammation (25,50,59).

Prodigiosin

A pinkish linear trypyrrole pigment with cytotoxic and T cell
suppressive activities (56,67).

Metacyclo-prodigiosin

Desmethoxy prodigiosin and Prodigiosin 25-C: This pigment
has anti-malarial, antibiotic, immunosuppressive and anti-biofilm
activities (11,78). Yoshida and colleagues have showed that cyclo-
prodigiosin hydrochloride; similar to other prodigiosins can pro-
mote H+/Cl– symport which may lead to cytosol acidification and
resulting in cell death process (8,72). Other hypotheses about the
pigment’s functions were suggested by Songia et al. (44). They
found that the rise of preventing of human lymphocytes prolifera-
tion is conducted by inhibiting the retinoblastoma phosphorylation
and suppression depending on kinase 2 and 4. Scientists have
found that this pigment stimulates apoptosis in sw-620 and DLD-
1 that causes mutations or defects in the p53 function (39).

Astaxanthin

A red-orange pigment that is produced by the fungus, yeast,
Agrobacterium aurantiacum, and Xanthophyllomyces dendrorhous
(76). This pigment has health benefits in the prevention of cardio-

vascular diseases, enhancing the human immune system, bioactiv-
ity against H. pylori and prevention of cataracts due to its high
antioxidant activity (38,74).

Violacein

A purple pigment that can be produced by several bacterial
species. This pigment has the antitumor, antiparasitic, antiproto-
zoal, anti-cancer, antiviral, antibacterial and furthermore antioxi-
dant activities (12,23,40). The antitumor mechanism of this pig-
ment is still being studied, and it has been recently shown that the
mentioned pigment activates the apoptosis in HL60 (leukemia) cell
line and p38 MAPK through the activation of caspase-8 and tran-
scription of NF-KB. The pigment’s toxicity in colorectal cancer
cell line, (HT29) has been evaluated. In addition, blocking the G1
phase, up-regulation in p53, p27, and p21 levels, decrease cyclin
D1 expression in the cell cycle are the violacein pigment other con-
sequences (42). Anti-mycobacterial activity of violacein pigment
produced from Janthinobacterium sp. and yellow-orange
Flexirubin pigment gained from Flavobacterium sp. were studied
by Mojib et al. (12,40,42,47).

As an inhibitor
The following pigments can be mentioned as a number of

those which are respected as an inhibitor factor: i) The yellow-
orange flexirubin pigment produced by Flavobacterium sp. with
the bactericidal activity against E .coli and B. cereus. It seems that
this antibacterial activity is more effective in Gram positive bacte-
ria (48). ii) Pyocyanin and Pyorubin produced by P. aeruginosa
have antibacterial effects on Citrobacter sp (68). iii) The orange
pigment produced by Exiguobacterium aurantiacum that has
antimicrobial activity against E. coli, Klebsiella sp., S. aureus and
Erwinia sp (49). iv) Melanin, a dark color, water insoluble and
resistant to concentrated acid, pigment by antimicrobial properties
and also protecting against UV, solar and gamma rays (17,21). The
antibacterial function of melanin in protecting bacteria is still
unknown. Recently a recombinant plasmid containing tyrosinase
gene has been manipulated in E. coli that induces the melanin in
tyrosine supplemented medium, whereas this role of melanin
hasn’t been proved yet in P. aeroginosa in in-vitro (6,15,52).

Textile industry purposes
Microorganisms produce a large variety of stable pigments like

Carotenoids, Flavonoids, and Quinones. In addition, some natural
colors, especially anthraquinones compounds, show the significant
antibacterial activity, so they are capable to be used as anti-micro-
bial dyes in textile industries. Alihosseini et al. described that the
red prodigiosin pigment achieved from Vibrio strains is used as the
color for wool, nylon, silk and acrylic fibers (1,43,66). A study
conducted by Yusof demonstrated that the Serratia marcescens
prodigiosin is applied for dyeing in acrylic fabric, micropolyester,
polyester, silk and cotton (51). Ahmad et al. described that viola-
cein pigment produced by Chromobacterium violaceum is used as
different fabric dyes like silk, cotton, acrylic and polyester (24).

As a virulence factor
There is a proven relationship between pigments and virulence

factors in several bacteria, so the most important ones are men-
tioned as below.

Staphyloxanthin

Is a carotenoid pigment which is produced in the biosynthetic
pathway by S. aureus. Many studies have shown that deletion of
the gene encoding the CrtM enzyme in the initial biosynthesis of
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Staphyloxanthin produces the bacteria without pigments and more
sensitivity to death by human neutrophils respectively (51). The
gene which encoding this pigment is regulated by operon
CrtOPQMN (45). It is noteworthy that 4’, 4’-diaponeurosporene is
considered as a secondary biosynthetic compound. Transferring of
both CrtM and CrtN genes from S. aureus to other genus of bacte-
ria will lead to synthesis of the 4’, 4’-diaponeurosporene. This
topic has been investigated in mouse models (51). Compared to
wild strains, non- pigmented mutants of S. aureus are more sensi-
tive to death by hydrogen peroxide, superoxide, hydroxyl radicals,
hypochlorite and oxygen (45,51).

Pyocyanin

Many species of Pseudomonas spp. produce blue, green pig-
ment of Pyocyanin (41). Many studies indicate that non-pigmented
mutant of P. aeruginosa is mostly ineffective on both acute and
chronic lung infection model in mice. This pigment has consider-
able toxic properties in a wide range of target organisms, compris-
ing bacteria, yeasts, insects, nematodes, and plants (33,69). One of
these mechanisms is inhibition of cellular respiration (46). On the
other hand, the ability of changing redox cycle and increasing
oxidative stress causes harmful varied effects on the host cells, for
instance disturbing the Ca2+ homeostasis in human respiratory
epithelial cells. While, Ca2+ is important for ion transport regulation
and mucus secretion, it is more likely to develop P. aeruginisa lung
related infections (34). Other toxic effects of this pigment are respi-
ratory cell disorders, inhibition of epidermal cell growth factors,
prostaglandin release from epithelial cells and changing the balance
of protease and anti-proteases activity in cystic fibrosis (2).

Violacein

Oxidation and bounding of two L-tryptophan molecules by
VioA and VioE enzymes produce pyrrolidone and, eventually,
Violacein (7). This pigment has powerful antioxidant properties
and may protect lipid membrane against peroxidation that induced
by hydroxyl radicals (75). Evaluating of this pigment as a
chemotherapeutic agent shows that it is capable to induce leuko-
cytes apoptosis (7).

Granadaene of group B Streptococcus

Granadaene is one of the main causes of neonatal infections is
Group B streptococcus, which can produce the red-orange pig-
ments (31). Though, recent reports have shown that ornithine
rhamno-polyene pigment structure with 12 conjugated double
bonds is called granadaene and increases survival in macrophages
(65). Additionally related studies demonstrated that, Streptococcus
pigmented strains may lead to systematic related infections. Also
the mentioned pigment may have the virulence function (50,77).

As a marker

The emergence of violacein pigment with Flexibacter and
Sporocytophaga imply on water contamination (14,22). As well
the non-blue pigment of Vogesella indigofera illustrates the
chromium contaminated sites because this bacterium produces
blue pigment in normal conditions but in Cr6+ contaminated areas,
the related encoding genes expression is inhibited which is defined
as a bacterial defense system (19,71).

Currently, pigment biosynthesis can be regulated by molecu-
lar techniques and genetic engineering with expression and inhi-
bition of responsible genes (9). A blue actinorhodin pigment pro-
duced by Streptomyces coelicolor can be lead to the production of
bright yellow Kalafungin by using of genetic modification tech-
niques (61). This method is performed for modification of acti-

norhodin pigment to Anthraquinones (26,28). Production of bac-
terial pigments such as Prodigiosin and Violacein is controlled by
the Quorum sensing system (32,58). Finally it should be noted
that pigments produced by bacteria are removable by using differ-
ent solvents and their features are detectable with various tech-
niques: Thin-layer chromatography (TLC), Ultraviolet–visible
spectroscopy (UV-Vis), Fourier transform infrared spectroscopy
(FTIR), Electrospray ionization mass spectrometry (ESI-MS),
Nuclear magnetic resonance (NMR), and High performance liq-
uid chromatography (HPLC). Moreover the spectroscopy of vari-
ous pigments is available by Raman Spectroscopy. Nowadays,
extracting the pure and concentrated bacterial pigments is a major
challenge of technology (27,55).

Conclusions

In conclusion, despite of our hypothesis about bacterial pig-
ments, these components have both pathogenesis factors and ben-
eficial aspects.
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