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Abstract

JNK is a subfamily of MAP kinases that hat
regulates a range of biological processes impli-
cated in response to stress, such as cytokines,
ultraviolet irradiation, heat shock, and osmotic
shock as well as growth factors like PDGF, EGF,
FGF, etc. They were originally identified as
kinases that bind and phosphorylate JUN on
S63 and Se73 within its transcriptional activa-
tion domain. The deregulation of these kinas-
es is shown to be involved in human diseases,
such as cancer, immune diseases and neu-
rodegenerative disorders. The realization of
the therapeutic potential of the inhibition of
JNKs led to a thorough search for small-mole-
cule inhibitors first for research purposes, but
later also for therapeutic applications. Here,
we discuss some of the most well-known JNK
inhibitors and their use in basic research or
clinical science.

Introduction

Protein kinases are a large family of
enzymes, which catalyze protein phosphoryla-
tion. The phosphorylation of proteins results in
a change in localization of protein and/or their
function such as interaction with other pro-
teins, affinity or enzymatic activity. The
human genome contains more than 510 pro-
tein kinase genes. Protein phosphorylation
plays a crucial role in the regulation of many
cellular functions such as proliferation, differ-
entiation, migration and apoptosis. Because of
that, deregulation of kinase activity can result
in outstanding alterations in these processes.
For example, deregulated kinases are fre-
quently found to be oncogenic and can be
essential for the survival of cancer cells.1
Moreover, the phosphorylation of some pro-
teins, such as ErbB2,2-4 EGFR,3,5 Erk,6-8 SchA,9
Akt10,11 and many more, is associated with
prognosis in a number of human cancers.
c-Jun N-terminal kinases (JNKs) are mem-

bers of subfamily of MAP kinase family of ser-
ine/threonine kinases which are found in both

unicellular organisms such as yeast and multi-
cellular organisms such as plants, fungi, and
vertebrates. There are three different alterna-
tively spliced genes MAPK8 (JNK1), MAPK9
(JNK2), and MAPK10 (JNK3) that produce ten
different isoforms. JNK1 and JNK2 are ubiqui-
tously expressed but JNK3 is expressed prima-
rily in the nervous system.12-15 JNKs are acti-
vated by phosphorylation in the activation loop
at residues Thr183/Tyr185 (JNK1, JNK2) or
pThr-221 and pTyr-223 (JNK3) by the MAP2Ks:
MAP2K4 (MKK4), MAP2K5 (MKK5) and
MAP2K7 (MKK7), and are dephosphorylated
and thus deactivated by MAP kinase phos-
phatases including DUSP1 (MKP1) and
DUSP10 (MKP5). Signaling through the JNK-
pathway is organized through binding to scaf-
fold proteins such as MAPK8IP1 (JIP1),16
MAPK8IP2 (JIP2), MAPK8IP3 (JIP3), SPAG9
(JIP4)17 or WDR62,18 which assemble signal-
ing complexes containing MAP3K, MAP2K and
MAPKs in addition to JNK-phosphorylated
transcription factors such as JUN, ATF2 and
ELK1.
JNKs are play a central role in the inflamma-

tory signaling system, and thus it is not unex-
pected that deactivation of JNK signaling is
very common in a number of diseases, such as
cancers, inflammatory, autoimmune and neu-
rodegenerative diseases. There’s plenty evi-
dence showing that JNKs could be considered
as therapeutic targets in Parkinson’s and
Alzheimer’s disease,19,20 obesity and insulin
resistance,21,22 rheumatoid arthritis,23
asthma,24-26 vascular disease and atherosclero-
sis.27
The importance of JNKs in many biological

processes as well as pathologies led to a seri-
ous pursuit for small-molecule inhibitors,
which resulted in various small molecules
such as aminopyrazoles, aminopyridines,
aminopyrimidines, indazoles, pyridine carbox-
amides, benzothien-2-ylamides and benzothia-
zol-2-yl acetonitriles to be reported as JNK
inhibitors.28 Here we will discuss most inter-
esting and successful of those.

JNK inhibitors

AS601245 is a potent and cell permeable ATP
competitive JNK inhibitor. IC50: JNK1 =
150nM, JNK2 = 220nM, JNK3 = 70 nM (Figure
1). Displays anti-inflammatory properties as
shown in an experimental mouse model of
rheumatoid arthritis29 and has been shown to
reduce TNF-� plasma levels induced by LPS in
mice.30,31 It has also been shown to provide sig-
nificant protection against the loss of hip-
pocampal CA1 neurons in a gerbil model of
transient global ischemia, suggesting that it
may be a pertinent approach in the therapy of
ischemic insults,32 it also reduced damage to

neurites and decreased astrogliosis in a simi-
lar study.33 Likewise, this inhibitor rescued
neuronal apoptosis in the developing rat brain
after hypoxia-ischemia.34 AS601245 also
decreased cardiomyocyte apoptosis and infarct
size after myocardial ischemia and reperfu-
sion in rat model of myocardial
ischemia/reperfusion.35
Interesting findings have been obtained

using AS601245 as an antiviral agent.
AS601245 as well as SP600125 inhibited cellu-
lar entry and replication of hepatitis C virus.36
In addition, the application of SP600125 and
AS601245 reduced influenza A virus (H7N7
and H1N1v) amplification by suppressing viral
protein and RNA synthesis.37 AS601245 was
also found to be a potent inhibitor of HIV-1
reactivation in latently infected primary T cells
and T cell lines.38
Probably the most interesting are the find-

ings of AS601245 as an anticancer agent.
AS601245 decreased cell adhesion and migra-
tion via decrease in the fibrinogen release in
human colon cancer cells.39 It has also affected
the proliferation of colon cancer cell lines.40
AS601245 also led T-cell acute lymphoblastic
leukemia cells to cell cycle arrest and apoptosis
and increased sensitivity to Fas-mediated
apoptosis41 and sensitized promonocytic
leukemia cells to arsenic trioxide-induced
apoptosis.42

AS602801 (Bentamapimod) is a selective
JNK inhibitor that has been found to block T-
cell proliferation and induce apoptosis. IC50:
JNK1 = 80 nM, JNK2 = 90 nM, JNK3 = 230 nM
(Figure 1). This inhibitor blocked T-lympho-
cyte proliferation and induced apoptosis in
relapsing-remitting multiple sclerosis
patients.43 In addition, it has been shown to
induce the regression of endometriotic lesions
in human endometrial organ cultures, nude
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mice xenograft as well as rat disease models.44
AEG 3482 is a JNK inhibitor with an IC50 = 20

μM (Figure 1). The action is not direct, since it
binds Hsp90 and facilitates HSF1 release,
induces expression of Hsp70, which in turn
blocks JNK activation. It also reduces apoptosis
of neonatal sympathetic neurons after NGF with-
drawal.45 It was also shown to decrease neuron
specific toxicity of oligomeric amyloid b.46

BI 78D3 is a JNK inhibitor with an IC50 =
280 nM. It displays >100 fold selectivity over
p38 kinases and no activity towards mTOR and
PI-3K (Figure 1). BI 78D3 acts via inhibition of
JIP1-JNK binding. It has also been shown to
restores insulin sensitivity in mouse disease
models of type 2 diabetes.47 BI-78D3 as well as
SP600125 reduced phenylephrine- and nora-
drenaline-induced contractions of human
prostate smooth muscle.48 Interestingly, BI-
78D3 pretreatment sensitized osteosarcoma
cells (but not normal osteoblasts) to doxoru-
bicin-induced apoptosis,49 which gives some
ground for thoughts regarding the future com-
bination treatment. 

CC-401 is a specific inhibitor of JNK with
IC50 = 25-50nM. It is a second generation ATP-
competitive inhibitor selective against JNK
over other kinases such as p38, ERK, IKK2 and
ZAP70 (Figure 2). It was shown to significantly
inhibit renal fibrosis and tubular cell apopto-
sis, thus suggesting JNK pathway as a poten-
tial therapeutic target in progressive kidney
disease.50 In addition, CC-401 blocked reduced
proteinuria in rat experimental anti-GBM
glomerulonephritis51 and crescent formation,
in a rat model of severe crescentic anti-GBM
glomerulonephritis.52 CC-401 was also shown
to decrease hepatic necrosis and apoptosis
after orthotopic liver transplantation in rats53
and hepatic ischemia reperfusion injury.54,55
CC-401 in combination with oxaliplatin
showed synergism in colon cancer cell lines
HT29 and SW620 both in vitro and in mouse
xenografts.56 CC-401 as well as SP600125 effi-
ciently inhibited human cytomegalovirus repli-
cation in cultured human fibroblast.57

SP600125 is a potent, selective and
reversible inhibitor of JNK enzymes, with IC50:
JNK1, JNK2 = 40 nM JNK3 = 90 nM. Inhibition
is over 300-fold more selective for JNK as com-
pared to ERK and p38 MAP kinases (Figure 2).
It is the most widely used JNK inhibitor in
basic and clinical research, with several hun-
dred papers published. One of the main clini-
cal aspects of SP600125 is the neuroprotection.
It was shown to protect dopaminergic neurons
form the apoptosis in the 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine model of Parkin -
son’s disease58 protect a transient brain
ischemia/reperfusion-induced neuronal death
in rat hippocampal CA1neurons,59,60 protect
cerebellar granule cells against potassium dep-
rivation-induced apoptosis,61 decrease strepto-
zotocin induced neurocognitive deficit and

oxidative stress in rats,62 prevent the disrup-
tion of blood-brain barrier induced by metham-
phetamine63 and diminish neuronal cell death
in experimental cerebral malaria in mice.64
Worth mentioning is anticancer activity of
SP600125 as well. It was shown to induce cell
death selectively in undifferentiated thyroid
cancer cell lines,65 sensitize the multidrug-
resistant KBV20C human oral squamous carci-
noma cell line,66 enhance TGF-�-induced apop-
tosis of human cholangiocarcinoma cell line
RBE,67 suppress glioblastoma cells,68 selective-
ly kill p53-deficient human colon carcinoma
cells in mouse xenograft model,69 enhance
dihydroartemisinin-induced apoptosis in
human lung adenocarcinoma cells70 and
reduce the viability of doxorubicin resistant
stomach cancer cells.71 Inflammation is anoth-
er area where SP600125 has been extensively
studied. It was shown to have protective effects
in an experimental model of cerulein-induced
pancreatitis,72 diet-induced rat model of non-
alcoholic steatohepatitis73 and mouse model of
allergic airway inflammation74 and promote
resolution of allergic airway inflammation in
murine acute asthma model.75 In addition,
SP600125 had protective effects of on renal
ischemia-reperfusion injury in rats76,77 and
hepatic failure.78 It also had antiviral activities,
as mentioned above as well as suppressed allo-
graft rejection.79

SU 3327 is a selective inhibitor of JNK with
IC50 = 0.7μM. As BI 78D3, SU 3327 also acts via
inhibition of JIP1-JNK binding (IC50 = 239

nM) (Figure 2).80 Pre-treatment of human
astrocytes with either SP600125 or SU 3327,
and trauma-induced human astrocyte retrac-
tion in in vitro study.81 Inhibition of JNK by
SU3327 was shown to aggravate the recovery
of rat hearts after global ischemia.82 SU 3327
was also shown to reduced mitochondrial dys-
function and liver damage in acute liver injury
mouse model.83

Tanzisertib (CC-930) and D-
JNKI-1 (XG-102, AM-111) -
First JNK inhibitors in clinical
trials

Tanzisertib (CC-930) is a potent, selective,
and orally active JNK inhibitor, developed by
Cellgene company, with IC50: JNK1 = 0.06 μM,
JNK2 = 0.007 μM and JNK3 = 0.006 μM and
selective against MAP kinases ERK1 and p38�
with IC50 of 0.48 and 3.4 μM respectively.84 Of
a panel of 240 kinases, EGFR was the only non-
MAP kinase showing IC50 of 0.38 μM (Figure
2). CC-390 was also evaluated in several ani-
mal models. In acute rat LPS-induced inflam-
mation model inhibited the production of TNF�
by 23% and 77% at 10 and 30 mg/kg oral dose
respectively. In a mouse bleomycin-induced
pulmonary fibrosis model it reduced Lung
fibrosis scores by 18-32% in dose dependent
manner (25-150 mg/kg CC-930 prior to admin-
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Figure 1. AS601245, AS602801 (Bentamapimod), AEG 3482 and BI 78D3.
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istration of bleomycin).85 Based on animal
models and negative toxicity results, CC-930
was selected as a further development candi-
date for Phase I clinical trial. Results from
Phase I trials in healthy male volunteers have
indicated that CC-930 was well-tolerated and
exposure was dose-proportional, therefore CC-
930 was advanced to Phase II clinical trial to
characterize the safety, pharmacokinetics, and
biological activity in patients with idiopathic
pulmonary fibrosis.86 Trial design was follow-
ing: 4-week placebo-controlled double-blind
treatment phase; CC-930 sequential escalation
oral doses: 50 mg QD, 100 mg QD, 100 mg BID;
52-week open-label treatment extension plus
52-week follow-up phase. Preliminary results
showed that he change in MMP-7 plasma lev-
els significantly correlated with the change in
lung function and there was a decrease in
MMP-7 plasma level with increasing CC-930
dose and drug exposure. However, Tanzisertib
clinical development has been discontinued
due to unfavorable risk/benefit profile.

D-JNKI-1 (XG-102, AM-111) is one of the
best known and most used peptide inhibitors
of JNK [others being TI-JIP, TAT-TIJIP and L-
JNKI (XG-101)]. It is an inhibitory peptide
derived from JIP and is blocking JNK-JIP inter-
action. D-JNKI-1 is the D aminoacid-contain-
ing retroinverso peptide, derived from the JIP
JNK-binding domain sequence87 (Figure 3). A
number of preclinical studies using this pep-
tide inhibitor, resulted in clinical evaluations.
In a model of hearing loss using organ cultures
of neonatal mouse cochlea exposed to an
aminoglycoside and cochleae of adult guinea
pigs that were exposed to either an aminogly-
coside or acoustic trauma, D-JNKI-1 protected
against auditory hair cell death and resulting
hearing loss.88 In addition, delayed phase of
hearing loss caused by cochlear implant elec-
trode insertion in guinea pigs can be prevent-
ed by D-JNKI-1 treatment of cochlea.89 In chin-
chilla model for permanent hearing loss from
impulse noise trauma, this inhibitor also had a
protective effect.90 D-JNKI-1 also reduced hear-
ing loss in a guinea pig model of acute
labyrinthitis.91 Based on these preclinical find-
ings, a prospective randomized phase I/II study
was initiated for the intratympanic treatment
of acute acoustic trauma with D-JNKI-1.92 The
signs of a therapeutic effect were seen in this
study. Some adverse events were reported in
45% (5/11) of study participants; however none
of them were serious or severe. Another dou-
ble-blind, randomized, placebo-controlled
phase II study for treatment of acute sen-
sorineural hearing loss was initiated by Auris
Medical.93 Single-dose intratympanic injection
of D-JNKI-1 (0.4 or 2.0 mg/mL) or placebo was
used in 210 patients within 48 h after acute
acoustic trauma or idiopathic sudden sen-
sorineural hearing loss. 0.4 mg/mL showed sta-
tistically significant, clinically relevant, and

persistent improvements in hearing compared
with placebo; the drug was well tolerated. The
same company is currently organizing two cru-
cial phase III clinical trials in the treatment of
idiopathic sudden sensorineural hearing loss:
HEALOS (Europe/Asia, start Q4/2015) and
ASSENT (USA, start Q2/2016). In both trials a
single dose of D-JNKI-1 0.4 mg/mL or 0.8
mg/mL will be compared to placebo in patients

suffering from acute severe to profound hear-
ing loss within 72 hours from idiopathic sud-
den sensorineural hearing loss onset.94 In
addition, a phase II trial in the treatment of
surgery-induced hearing loss called REACH
(USA; start Q3/2016) is being prepared.94 D-
JNKI-1 will be administered intraoperatively in
patients with residual hearing who are under-
going cochlear implant surgery and who are at
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Figure 2. CC-401, SP600125, SU 3327 and CC-930 (Tanzisertib).

Figure 3. D-JNKI-1 (XG-102, AM-111). A) 2D structure of D-JNKI-1 peptide (copied
from https://pubchem.ncbi.nlm.nih.gov/compound/72941992). B) D-JNKI-1 peptide
amino acids: above - D aminoacid-containing retroinverso peptide, with underline amino
acids, corresponding to JIP1 protein; under - the JIP1 JNK-binding domain sequence
from which amino acids were derived.
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risk of losing residual hearing.
Similarly, the preclinical model, such as

endotoxin-induced uveitis in rats,95 led to the
indication of the phase I clinical trial in 20
patients with intraocular inflammation.96
Patients were assigned to 1 of the 4 dose esca-
lating (45, 90, 450, or 900 μg D-JNKI-1) groups
of 5 patients each. Drug safe and well tolerated
[17 non-serious adverse events, considered
unrelated to the study treatment, were report-
ed for 50% (10/10 patients); adverse event
incidence was not related to the drug dose],
however further studies are required to evalu-
ate its efficacy. Several other pathological con-
ditions have been tested in preclinical animal
models, such as cerebral ischemia,97-100 neuro-
pathic pain,101 myocardial ischemia-reperfu-
sion injury,102 hepatic damage,103,104 middle
cerebral artery occlusion,105 skin cancer,99
Alzheimer’s disease,106,107 non-alcoholic
steatohepatitis,108 colitis,109 spinal cord
injury110 and others, suggesting, that many
more clinical trials are underway. 

Conclusions and Future
Perspectives

Regardless of significant developments in
latest years in the development of JNK, many
questions are yet unanswered. One of the
main concerns is the JNK inhibitor specificity
and suitable ways to control it. Another impor-
tant question is whether the inhibitors selec-
tive for individual JNK isoforms are des-
ignable. On the other hand, knock-out and/or
siRNA studies should help to establish whether
isoform-specific inhibitors are at all desirable.
So far, judging by phenotypes of JNK1, JNK2
and JNK3 knock-out mice, JNK isoform-selec-
tive inhibitors seem to be valuable,111 however
experiences with other kinases show, that in
many cases inhibitors with broader selectivity
sometimes are more beneficial than very spe-
cific ones. The sequence similarity between
isoforms could also make it extremely difficult
to achieve the specificity. Peptide inhibitors
might be able to solve these problems. On the
other hand, new approached, such like com-
puter-assisted, 3D structure based approaches
to generate new generations of kinase
inhibitors112 might solve a lot of problems as
well. On the other hand, from the studies on
other kinase, such as CDKs,113 it seems that
combination therapies are more hopeful than
immunotherapies, therefore chemotherapeu-
tic or other agents should be evaluated in com-
bination with JNK inhibitors. Other targeted
drugs such as inhibitors of other kinases as
well as other enzymes should also be evaluated
in combination with JNK inhibition.
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