Bacillus mojavensis: biofilm formation and biochemical investigation of its bioactive metabolites

Ippolito Camele,¹ Hazem S. Elshafie,¹ Lucia Caputo,² Shimaa H. Sakr,¹ Vincenzo De Feo²

¹School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza; ²Department of Pharmacy, University of Salerno, Fisciano, Italy

Abstract

Bacillus mojavensis is an endophytic bacterium which has been reported to have fungicidal effect against some phytopathogens. Bioactive secondary metabolites produced by *B. mojavensis* could have promising applications in agricultural, food industry and clinical fields. The current research has been conducted to: i) evaluate the antagonistic effect of *B. mojavensis* isolate against some phytopathogens; ii) characterize chemically the principal bioactive substances produced by the studied isolate of *B. mojavensis* using Gas Chromatography-Mass Spectroscopy (GC-MS); iii) evaluate its ability to produce a biofilm using ELISA technique. Results showed that the studied isolate has an antagonistic activity against the majority of tested microorganisms. Results showed also that the studied isolated produced a biofilm in Supplemented Luria-Bertani Casamino acid (SLB) and Minimal Mineral (MM) medium. The substantial attached growth in SLB was significantly higher than MM media. GC-MS analysis revealed the presence of 9 compounds accounting 87.8% of the total extract, where oxygenated monoterpenes are the main constituents.

Introduction

Bacillus mojavensis, that Roberts et al.¹ previously classified as *Bacillus subtilis*, was firstly isolated from Mojave desert (California, USA).² Several studies reported that all strains of this species have antagonistic activity against different fungi² and it is considered one of the most important endophytic biocontrol agents.²-⁴ Several endophytes have been used in biological control and as plant growth promoters.⁵-⁶ The growth promotion mechanisms of several endophytic bacteria include the production of volatile, diffusible bioactive substances⁷-¹⁰ and plant hormones such as auxin, cytokinin and gibberellin.¹¹,¹²

Recently, a lot of researchers all over the world have been interested to reduce the dependency on the synthetic chemicals as antimicrobial agro-pharmaceutical agents.¹³ Worldwide, there is a great interest for the human health, animal welfare and also for environmental risks correlated to the excess consumption of commercial pesticides.¹³,¹⁴ The use of natural pesticidies extracted from plant essential oils and obtained from microbial secondary metabolites is considered one of the most important eco-friendly strategy for reducing the environmental pollution and preserve the human health.¹³,¹⁵

On this regard, the current research is trying to biochemically characterize the secondary metabolites produced by *B. mojavensis* for eventually use them in natural products pharmaceutical industry. Bacon and Hinton¹⁶ have reported that *B. mojavensis* demonstrated inhibitory effects against *Fusarium verticillioides* (Sacc.) by decreasing its toxin accumulation and disease incidence and also promoted the seedling growth of maize.

Biofilm is an important chemically complex structure, formed by various bacterial and fungal pathogens for regulating several biological activities (antibiotic resistance, metabolic processes, etc.).¹⁷-¹⁹ The biofilm formation is regulated by quorum sensing phenomena by different bacterial species.²⁰ In addition, the biofilm plays an essential role for better adaptation of bacterial cells in different conditions.²¹ Bacterial biofilms are associated with serious medical microbial infections that are resistant to antibiotics such as *Pseudomonas aeruginosa*.²² Most phytopathogenic bacteria, such as *Xylella fastidiosa*, form biofilm in order to...
Many Authors have reported that lipopeptides and other related biosurfactants can induce the biofilm formation. The investigation of biofilms for plant and human diseases gives a clear sight about the bacterial behavior and infection and the possible way for its control. For this reason one of the main motivations of the current research is to study the ability of the studied isolate to form a biofilm and to evaluate the effects of some nutrient media and other growth conditions on its intensity.

Moyne et al. studied the bioactivity of various species of Bacillus and results showed that they are able to produce remarkable distribution of three cyclic lipopeptides: surfactin, iturin and fengycin. Bacon and Hinton reported that Bacillus spp., in general, are able to produce lipopeptides biosurfactants such as surfactin, pumilacidin, esperin, fengycin and iturin. The lipopeptides have a potential antifungal activity in managing infections caused by multidrug resistant and biofilm forming pathogens. Surfactin is considered a characteristic feature of Bacillus spp. including B. mojavensis and plays an essential role in interspecies competition, biofilm formation, cell motility, root colonization and plants systemic protection.

In this research, antibiofilm activity of B. mojavensis was investigated against B. megaterium de Bary, Clavibacter michiganensis Smith (G+ve), Xanthomonas vescicatoria Doidge, Pseudomonas fluorescens Flügge, Pseudomonas savastanoi (Janse) Gardan and Pseudomonas syringae pv. phaseolicola Van Hall (G-ve). Furthermore, antifungal activity has been also evaluated against Monilinia laxa (Aderh. & Ruhland) Honey, Monilinia fructicola (G. Winter) Honey, Monilinia fructigena Honey, Fusarium oxysporum Snyder and Hansen, Rhizoctonia solani J.G. Kühn, Botrytis cinerea Pers., Aspergillus ochraceus Wilhelm, Penicillium digitatum Sacc., Sclerotinia sclerotiorum (Lib.) de Bary., Colletotrichum acutatum J.H. Simmonds and Cryphonectria parasitica (Murrill) Barr. Biofilm formation was screened by measuring the absorbance at λ 540 nm of bacterial cells adherent to Microplate-96 wells in two different nutrient media: supplemented Luria-Bertani Casamino acid (SLB) and Minimal Mineral (MM). Finally, the chemical characterization of the purified filtrate was carried out using Gas Chromatography-Mass Spectroscopy (GC-MS).

Materials and Methods

Tested bacteria

The tested bacteria were: B. megaterium, C. michiganensis (G+ve), X. vescicatoria, P. fluorescens, P. savastanoi and P. syringae pv. phaseolicola (G-ve). All tested bacteria were cultured on agar King B (KB) media and incubated at 30±2°C for 72 h and stored as pure freeze-dried cultures (-20°C) in the collection of the mycotheca of SAFE and re-cultured on Potato Dextrose Agar (PDA) at 24±2°C.

Tested fungi

The tested fungi were: M. laxa, M. fructicola, M. fructigena, F. oxysporum, R. solani J.G. Kühn., B. cinerea, A. ochraceus, P. digitatum, Sclerotinia sclerotiorum, C. acutatum and C. parasitica. The above-mentioned studied fungi were maintained as pure cultures in the mycotheca of SAFE and re-cultured on Potato Dextrose Agar (PDA) at 24±2°C.

Antagonistic bacterial assay

B. mojavensis was evaluated for its antagonistic activity against target bacteria. In particular, single small mass from fresh culture (24 h) of B. mojavensis were deposited in the centre of Petri dish containing KB as nutrient media. Successively, suspension of each tested bacteria (10⁸ CFU.mL⁻¹) was applied and, then, all plates were incubated at 30°C for 24 h. As negative control, for each treatment, three KB plates without B. mojavensis have been used. The diameter of inhibition zone was measured and the bacterial inhibition percentage was calculated (Equation 1):

\[
\text{BIP (\%) = 100 - \frac{[\text{GC} - \text{GT}]}{\text{GC}} \times 100}
\]

Where BIP: bacterial inhibition percentage; GC: average diameter of bacterial grown in cm (control); GT: average diameter of inhibition zone in cm (treatments).

Antagonistic fungal assay

Antifungal activity of B. mojavensis was evaluated following contact-phase method. Ten µL of the bacterial suspension was deposited on a PDA-Petri dish previously inoculated with a fungal disc (0.5 cm²). All plates were incubated at 22±2°C for 96 h. The diameter of fungal mycelium growth was measured in mm. Each treatment was carried out in triplicate. As negative control, for each treatment, three PDA plates without B. mojavensis have been used. The growth inhibition percentage (GIP) was calculated according to Zygodlo et al. formula (Equation 2):

\[
\text{GIP (\%) = 100 \times \frac{\text{GC} - \text{GT}}{\text{GC}}}
\]

where GC: average diameter of fungus colony grown on PDA alone (control); GT: average diameter of fungus colony grown on PDA containing each treatment.

Biofilm formation assay

Biofilm formation assay was carried out to reveal the ability of B. mojavensis to adhere the wells of Microplate-96 (MaxiSorpt™ Surface, Denmark) as explained by Conway et al. The tested bacteria was cultured on Luria-Bertani (LB) media and 100 µL of bacterial suspension were injected in each well. Two types of media were employed: i) SLB composed of LB with 0.5% (w/v) and Casamino Acids, and ii) MM ([KH₂PO₄ , 10.5 g; KH₂PO₄ 0.5 g; (NH₄)₂SO₄, 1 g; NaC₆H₆O₇(2H₂O, 0.5 g; MgSO₄ 7H₂O, 0.2 g; dextrose, 5 g; agar 16 g l⁻¹]). Microplate-96 were covered and incubated at 37°C for three different incubation period (24, 48 and 72 h). The plates were washed after that and stained with 125 µL of 1% (w/v) crystal violet for 15 min. It was added after that 200 µL ethanol (95%) to each well to release the stain. Absorbance of the remaining stain dye was measured at λ 540 nm using the Elisa Microplate reader instrument (DAS s.r.l., Rome, Italy). This assay was repeated twice with three replicates per each ±SDs.

Gas chromatography and gas chromatography/mass spectroscopy analyses

Preparations of bacterial cell-free culture filtrate

The studied bacteria were cultured at 30°C in Erlenmeyer flask-500 mL of MM broth media (150 mL). About 1.5 mL of B. mojavensis suspension (10⁶ UFC/mL) was transferred into the MM flask and then was putted in a shacked-incubator (180 rpm, 5 days, 24°C).
Extraction of diffusible secondary metabolites

The bacterial broth was centrifuged at 21,000 g (15 min). The supernatant was filtered by sterile Millipore (USA) filter 0.22 nm and subsequently lyophilized using CHRIST ALPHA 1-4 (B. Braun Biotech International, Germany) and stored at −20°C. Lyophilized aliquots of 300 mg were suspended in 10 mL sterile distilled water (SDW) and injected after that into a cartridge syringe (Strata C18-T) washed with 2 mL of methanol and 2 mL of SDW. Each cartridge was washed after that with 1 mL SDW and the purified bioactive substances were recovered by 1 mL of methanol. The purified filtrate was analyzed by GC and GC-MS for components identification.

Gas chromatography-flame ionization detector analysis

GC analyses were performed using Perkin-Elmer Sigma-115 gas-chromatograph (PerkinElmer, Waltham, MA, USA) with a data handling system and a flame ionization detector. The separation was achieved using a HP-5 MS fused-silica capillary column (30 m×0.25 mm, 0.25 µm film thickness). The operative conditions were as follows: Column temperature: 40°C, with 5 min initial hold, and then to 270°C at 2°C/min, 270°C (20 min); injection mode splitless (1 µL of a 1:1000 n-hexane solution). Injector and detector temperatures were 250 and 290°C, respectively. Analysis was also run by using a fused silica HP Innowax polyethylene glycol capillary column (50 m×0.20 mm, 0.25 µm film thickness). In both cases, helium was used as carrier gas (1.0 mL/min).

GC-MS analyses were performed on an Agilent 6850 Ser. II apparatus (Agilent, Roma, Italy), fitted with a fused silica DB-5 capillary column (30 m×0.25 mm, 0.33 µm film thickness), coupled to an Agilent Mass Selective Detector MSD 5973 (Agilent); ionization energy voltage 70 eV; electron multiplier voltage energy 2000 V. Mass spectra were scanned in the range 40–500 amu, scan time 5 scans/s.

The identity of oil components was established from their GC spectra with those reported in literature or those of authentic compounds purchased from Sigma Aldrich, Co., Milan, Italy; available in our laboratories by means of NIST 02 and Wiley 275 libraries. Component relative concentrations were calculated based on GC area peaks normalization.

Statistical analysis

The obtained results from biofilm and antagonistic assays were statistically processed using Statistical Package for the Social Sciences (SPSS) version 13.0 (Prentice Hall: Chicago, USA, 2004). The analysis of variance one-way ANOVA and Tukey B Post Hoc multiple comparison tests have been performed with a probability of P<0.05.

Results and Discussion

Antagonistic bacterial activity

The results of antibacterial assay showed high antagonistic effect of *B. mojavensis* strain against *X. vesicatoria, P. savastanoi, P. fluorescens* and *P. syringae pv. phaseolicola* and a moderate effect against *B. megaterium* (Figure 1). *X. vesicatoria* and *P. savastanoi* were the highest significant inhibited bacteria and slightly higher than *P. fluorescens* and *P. syringae pv. phaseolicola* (Figure 1). On the other hand, *B. mojavensis* did not show any antagonistic activity against *C. michiganensis* (Figure 1).

Results demonstrated that tested G-ve bacteria have been inhibited significantly higher than G+ve ones in contrast to the general statement indicating that the systemic resistance of G-ve is more than G+ve ones. The high systemic resistance of G-ve is due to the structure of the outer cell membrane that composed of two layers of peptidoglycan and lipopolysaccharides whereas G+ve has only one peptidoglycan layer. The obtained results are interesting in this regard for controlling some G-ve phytopathogens. The enhancement of antagonistic activity of the studied bacterium is explained by different mechanisms such as the increase of the cell membrane permeabilization and also the loss of cell ions which probably lead to the bacterial growth inhibition and hence the complete cell death.

Antagonistic fungal activity

Results demonstrated that *B. mojavensis* has antagonistic activity against most tested fungi (Figure 2). In particular, high significant antagonistic activity was observed for *P. digitatum, M. laxa, M. fructigena, C. acutatum, C. parasitica* and *S. sclerotio-
M. fructicola, B. cinerea and F. oxysporum. There is no notable inhibition activity against R. solani and A. ochraceus. The moderate activity against B. cinerea is presumptively due to its resistance especially in Agar-nutrient media. The potential antagonistic efficacy of the tested bacterium may be correlated to indirect antagonism of the produced bioactive substances which stimulate the host resistance response. The biological effects of surfactin have been reported in several studies having an inhibition effect against some pathogenic fungi, bacteria, mycoplasmas and viruses. On the other hand, the synergetic effect between two or more of the main chemical constituents of the studied isolate could have a distinctive role in its antagonistic activity.

The obtained results are promising especially in controlling P. digitatum which is considered one of the most aggressive post-harvest pathogen especially on Citrus species. Post-harvest diseases are the main reason of the fruit loss following harvesting. P. digitatum is responsible for 90% of citrus fruits lost in post-harvest causing green rot or mold in citrus fruits leading to severe economic losses worldwide.

Biofilm formation

Results revealed that the tested isolate was able to form a biofilm in two different nutrient media SLB and MM (Figure 3). In addition, the biofilm formation ability was also assessed after 24, 48, and 72 h of the incubation at 37°C. SLB and MM media have been used for evaluating the biofilm formation based on the bibliographic research which reported that a rich medium could accelerate the substantial attached growth. In particular, results showed a high significant variation of the biofilm formation between the tested media. The substantial attached growth of the studied bacterium in case of SLB media was significantly higher than MM media where the growth in SLB was ranged between 0.792 to 1.081 nm compared to 0.195 to 0.287 nm in case of MM (Figure 3). Further investigation showed that there are low significant differences within SLB media regarding the

![Figure 2. Fungicidal activity of Bacillus mojavensis against some phytopathogenic fungi. Bars with different letters indicate means values significantly different at P<0.05 according to Tukey post hoc test. Data are expressed as the mean of three replicates ± SDs. M. laxa, Monilinia laxa; M. fcola, Monilinia fructicola; M. fgna, Monilinia fructigena; B. cin, Botrytis cinerea; C. acut, Colletotrichum acutatum; C. paras, Cryphonectria parasitica; F. oxy, Fusarium oxysporum; R. sol, Rhizoctonia solani; P. digi, Penicillium digitatum; A. ochra, Aspergillus ochraceus and S. scl, Sclerotinia sclerotiorum.](image)

![Figure 3. Biofilm formation by Bacillus mojavensis at different incubation times. Tested strain was grown in 96-well polypropylene microtiter dishes in Supplemented Luria-Bertani Casamino acid (SLB) and Minimal Mineral (MM) media. Biofilm formation was assessed at 24 h (black bars), 48 h (white bars), and 72 h (grey bars). Each bar represents the average for three replicates. Bars with different letters for each nutrient media indicate means values significantly different at P<0.05 according to Tukey post hoc test. Data are expressed as the mean of three replicates ± SDs.](image)
incubation time, whereas there is no significant difference within MM media in relation to the incubation time. Surfactin might play an important role in regulation of the biofilm formation and other biological activities.29

On the other hand, the obtained results showed that the biofilm formation can be induced by modifying the nutrient media components and especially in case of the rich media SLB which has accelerated the growth rate of the studied bacterium and hence a strong formation of biofilm could be a probable result. As conclusion, the biofilm formation might help \textit{B. mojavensis} against many microbial agents, furnish resistance to antibiotics and hence increasing its antagonizing effect.20

Gas chromatography/mass spectroscopy analysis

Table 1 shows the chemical composition of \textit{B. mojavensis} extract in percent; compounds are listed according to their elution order on a HP-5MS column. Altogether, 9 compounds were identified accounting for 87.8\% of the total extract. Oxygenated monoterpene hydrocarbons are the main constituents with \textit{p}-cymen-8-ol (27.1\%) and 3-thujanol (36.3\%). Monoterpene hydrocarbons are present in lesser amounts, with \textit{\alpha}-pinene (6.8\%) and 2,5-diethenyl-2-methyl-tetrahydrofuran (6.0\%).

In our study the studied isolate produced 3-thujanol (36.3\%) as main constituent by using KB medium which contain some other nutrient minerals such as dipotassium hydrogen phosphate and magnesium sulphate heptahydrate. Instead, Youcef-Ali \textit{et al.}10 reported that surfactin and iturin were the principal substances in methanolic extract obtained from the culture supernatant of \textit{B. subtilis} and \textit{B. mojavensis}.10

Monoterpenes, in general, are considered as plant secondary metabolites, but isoprenoids, chemical unit of terpenes, are synthesized also by prokaryotes and are essential for cells primary functions and to assure their growth and survival.45 Many of compounds (monoterpenes and oxygenated monoterpenes) of the \textit{B. mojavensis} extract are present also in plant essential oils and determine their antimicrobiological activity against different microorganism.46

Our results are in agreement with previous studies reported that terpenoids can be isolated from endophyte cultures.47,48 Moreover it has been reported that \textit{B. subtilis}, a close relative of \textit{B. mojavensis}, produces volatile compounds that play an important role in activation of plant defence.49 Previous chemical investigations on \textit{B. mojavensis} have highlighted the antibacterial effects of some furan derivatives such as furan, 2- furaldehyde, 2-furfuryl alcohol, 2-furoic acid and nitrofuran compounds against both G+ve and G-ve bacteria and less activity against \textit{P. aeruginosa}.50

Conclusions

The genus \textit{Bacillus} in recent years has gained a great attention for its antagonistic activity and production of several diffusible bioactive metabolites. The potential biological activity of the studied \textit{B. mojavensis} might correlate with its ability to produce some specific lipopeptides biosurfactants and oxygenated monoterpenes. The above-mentioned metabolites may play an essential role in several biological properties of \textit{Bacillus} species such as biofilm formation, cell motility, root colonization and plants systemic protection. These metabolites could have also promising applications in agricultural, food industry and clinical fields. Further biological characterization assays seem necessary for the best application of the studied active metabolites on the large scale in pharmaceutical industry.

References

