
The COVID-19 pandemic has stimulated the production of
different therapeutic approaches for the resolution of coronavirus
infections. On one hand, nanobiomolecules have been proposed
as bait material for viruses,1,2 on the other hand unconventional
messenger RNA vaccines have been produced like SARS-CoV-2
mRNA vaccines (BioNTech/Pfizer BNT162b2 and Moderna
mRNA-1273). A not negligible advantage of these mRNA-based
vaccines is the speed with which they can be developed, especial-
ly in light of the discovery of new viral genetic variants and the
need to adapt the vaccine to the rapid genetic changes of the
virus. However, the biology of “retrotransposons” suggests
greater caution in their large-scale use. The idea that the mRNAs
of vaccines used to stimulate the immune response to SARS-
CoV-2 are reluctant to integrate into the cellular genome needs
more in-depth studies to be confirmd.3-9 In our opinion, these
studies should take in consideration that the human genome con-

tains L1 retrotransposons, DNA sequences that are autonomously
capable of increasing their copy number through a mechanism of
retro-transcription, from RNA to DNA, and concomitant inser-
tion of the neo-DNA copy in a different genomic locus than the
original. In theory, any mRNA of the cellular cytoplasm could be
recognized by the proteins of the molecular machinery of the
endogenous L1 retroelements, and could be integrated into the
genome in the form of a new copy of DNA. We hope to convince
the scientific community that further studies are needed to better
understand the mutagenicity of mRNA vaccines and in vitro
experiments should be design to elucidate molecular strategies
able to limit the effects of L1 on mRNA vaccine. L1 retroele-
ments are DNA elements of approximately 6 kilobases and make
up nearly 20% of the human genome. Their copies are replicated
in the genome by a mechanism of L1-retrotransposition.10,11 L1
messenger RNA encodes a few proteins that bind to their own
messenger RNA, including ORF1p and ORF2p. The latter is a
multifunctional protein with endonuclease and reverse transcrip-
tase enzymatic activities: the most important properties to
increase the number of L1 copy in a genome. In the nucleus of
cells, the mRNA-L1 is eventually retro-transcribed and integrated
into consensus regions of genome, 5’-TTTT / AA-3’, rich in
Adenine/Thymine.12 For completeness of information, another
L1 protein, ORF0p, should also be mentioned, which would help
to improve the efficiency of retrotransposition.13 The result of the
mechanism of L1-retrotransposition is the massive accumulation
of mobile elements in all cells of the genomes, from germ cells to
somatic cells, including nerve cells, where the phenomenon of
retrotransposition is well studied.14

In many eukaryotes, cellular mRNAs are endogenously retro-
transcribed and reintegrated into their own genome, producing an
increase in the number of copies, or rather, retrocopies. This
process is extensively studied in primates and mice.15,16 The
mechanism of retrotransposition is mainly based on the binding of
the ORF2p protein, encoded by L1, to the poly-A tail of the L1
mRNA. In this case, the interaction is called “cis”-association to
differentiate it from “trans”-association when the L1 protein com-
plex recognizes messenger RNAs that are not of L1 origin.17 The
binding of ORF2p to the poly-A tail of the mRNA plays a crucial
role in this process.18 Hypothetically, proteins encoded by L1,
including ORF1p and ORF2p, could interact with any mRNA,
including exogenous mRNA that is carried by the vaccine which
could be reverse transcribed and integrated into the genome.19,20 It
is estimated that in humans there are several thousand retrocopies
that may be at the origin of genes for some human diseases,
including tumors.16,21-26

Structurally, the messenger RNA of both the BNT162b2 vac-
cine and the mRNA-1273 vaccine exhibit typical eukaryotic mes-
senger RNA architecture, with some useful modifications to
improve its translation and escape the immune system.27,28 One of
these structural elements is the poly-A tail at the 3’ end of 110
nucleotides which, as reported above, should make these mRNAs
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excellent targets suitable for L1-governed trans retro-integration.17

It is urgent and necessary to undertake a specific experimental
study that demonstrates the real possibility of vaccine mRNAs
being captured by the L1 machinery and being retro-integrated into
the genome. These studies should also help to understand how to
avoid trans-association between L1 proteins and vaccine mRNAs.
In our opinion, genetic modification of the 3’-end of the poly-A
should be done to evaluate, in in-vitro experiments, the kinetics of
RNA-L1 protein association.29 Recently, the 3’-end of the SARS-
CoV-2 genome, shows to be more frequently integrated into cellu-
lar DNA than sequences closer to the 5’ end.30 Interestingly, the
same study has showed that mRNAs from the SARS-CoV-2
genome can be back-transcribed by L1 elements and integrated
into the genome of cultured human cells especially after viral
infection.10,30
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