Contamination level and exposure assessment to Aflatoxin M1 in Jordanian infant milk formulas

Saddam S. Awaisheh, Razan J. Rahahleh, Rania M. Algroom, Ala’a A. Al-Bakheit, Ja’far M. Al-Khazza1, Basim A. Al-Dababseh
1Department of Nutrition and Food Processing; 2Department of Food Science, Al-Balqa Applied University, Jordan

Abstract

Aflatoxin M1 (AFM1) is a principal hydroxylated-aflatoxin B1 (AFB1) metabolite, and has been classified as possible human carcinogen (group 2B). The aim of this study was to survey the contamination level, estimated daily intake (EDI) and tolerable daily intake % (TDI%) of AFM1 in Jordanian infant milk formulas. A total of 120 samples, 48 starter and 72 follow-on formula samples were collected and analyzed using ELISA technique. Of the 120 surveyed samples, 58 (48.33%) were AFM1-positive and exceeded the EU maximum limit for AFM1 in IMF (25 ng/kg). The average AFM1 concentration was 69.93 and 84.78 ng AFM1/kg, with range of <5 – 89.25 and <5 – 213.84 ng AFM1/kg in starter and follow-on formula, respectively. It is also noteworthy the high EDI of AFM1 by infants (1.557 and 1.551 ng AFM1/kg b.w./day), and the high TDI% values (786.9 and 775.9%). In addition, current study indicated high-extrapolated AFB1 content in the feed; accordingly, raised the need to implement good agricultural and hygienic practices as preventive and controlling measures to decrease AFM1 in milk and IMF through controlling AFB1 in feed at the farm level. Finally, it is obvious that the contamination of IMF by AFM1 is an international problem, and the protection of infants and young children against AFM1 in Jordan requires a fundamental setup of clear legal limits of AFM1 in Jordanian standards and strict monitoring and continual analysis of IMF traded and consumed in Jordan.

Introduction

Mycotoxins are highly toxic secondary metabolites produced by mold genera, such as Aspergillus, Fusarium and Penicillium (Kumar et al., 2008; Sweeney & Dobson, 1998). Aflatoxins (AFs) are the most carcinogenic mycotoxins metabolites produced mainly by strains of Aspergillus (A.) flavus and A. parasiticus. Majority of the food isolated AFs are aflatoxin B1, B2, G1, G2, M1, and M2 (AFB1, AFB2, AFG1, AFG2, AFM1, AFM2) (Alshannaq & Yu, 2017; Kumar et al., 2008). AFM1 is a principal hydroxylated-ABF1 metabolite that is biotransformed by hepatic microsomal cytochrome upon ingestion of AFB1 in feed, and usually excreted in milk (Alshannaq & Yu, 2017).

AFs accumulate in body and cause adverse health effects, including carcinogetic, mutagenic, teratogenic, nephrotoxic, hepatoxic and immunosuppressive effects, as well as developmental and birth defects (IARC, 2012). AFB1 has been classified as the strongest naturally occurring human carcinogen (group 1), while AFM1 has been classified as possible human carcinogen (group 2B) (IARC, 2012). The main AFM1 target organ in human body is the liver so it is primarily a hepatic disease. Milk is the main risk factor of human exposure to AFM1. Milk is considered as the perfect food for adults and infants, providing the major vital and functional ingredients for human life (Awaisheh et al., 2012, Awaisheh et al., 2013, Rababah et al., 2015). Infants are the foremost milk consumers and the most vulnerable group in population, which make them more susceptible to the adverse effects of AFM1, particularly hepatocellular carcinoma (WHO, 2014). Therefore, the incidence of AFM1 in milk and milk products is a serious health concern. The level of AFM1 in milk depends on the level of AFB1 in feeds. The contamination of milk and milk products by AFM1 is an inevitable process as at least 25% of the world’s crops are contaminated with mycotoxins including AFB1, and large amount of these crops are used for dairy cows feeding (FAO, 2003). Moreover, AFM1 is heat stable and can resist various thermal treatments, and is almost entirely retained in pasteurized, powdered and infant milk formula (IMF) (Galvano et al., 2001). Therefore, the incidence of AFM1 in milk and milk products cannot be prevented but can be controlled by restricting the level of AFB1 in feeds.

Internationally, the needs emerged and insisted on the importance of surveying and controlling the levels of AFM1 in various dairy products, with more attention to IMF. Therefore, the EU and Codex Alimentarius legal maximum tolerance limits (MTL) for AFM1 in IMF was 25 ng/kg (EC Regulation, 2006), with a tolerable daily intake (TDI) of 0.2 ng/kg b.w./day (Kuiper-Goodman, 1989). However, recent studies reported the increasing incidence AFM1 in IMFs, with many samples exceeding the international MTL (El-Tras et al., 2011; Kabak, 2012; Ghanem, 2009; Sadeghi et al. 2009). These reports drew the attention to the high health and life-threatening risks the infants may expose to upon consuming such contaminated products.

Despite the high risks of mycotoxins on human health, particularly infant’s health, surprisingly, official Jordanian standards of IMFs lack clear legal limits of AFM1 in these formulas, which implies that these formulas are not officially and routinely tested for AFM1. Upon extensive search, only one small-scale study by Omar (2016) was found in Jordan, where results of 20 samples showed that the level of AFM1 in 85% of IMF samples was higher than MTL, with average of 120.26 ng/kg and range from 16.55 to 288.68 ng/kg. Despite the important evidence these results might prevail about the health risks the infants in Jordan might be exposed to due to AFM1 contamination, the limited number of surveyed samples in this study is a serious limiting factor and could not give an actual pic-
ture about the contamination level of AFM1 in IMF in Jordan. In addition, this study did not assess the exposure risk assessment of Jordanian infants to AFM1 in IMF. For these reasons, the aim of this work was to assess the risk of exposure of Jordanian infants to AFM1 through determination the levels of AFM1 in expanded samples size of the leading brands of IMF marketed in Jordan using ELISA.

Materials and Methods

Samples collection
Total of 120 powdered IMF samples representing the most traded IMF brands in Jordan (n=15; 3 different batch numbers from each brand), were randomly collected from different markets and pharmacies in Jordan during March and September 2016. Collected samples were from local and imported sources, and classified as starter formula (given to infants during the first 6 months of age, 48 samples) and follow-on formula (given to infants from the 6th month on and for young children, 72 samples) (Table 1). Samples were stored in plastic bags at -20°C until the analysis.

Samples preparation
A portion of 10g from IMF samples was dissolved in 100 ml double distilled water, warmed up to 50°C and stirred on a stirrer hot plate, and centrifuged at 3500 g for 10 min at 10°C. The upper fat layer was removed, the supernatant was warmed up to 50°C and stirred on a stirrer hot plate, and centrifuged at 3500 g for 10 min at 10°C. The upper fat layer was removed, the supernatant was dissolved in 100 ml double distilled water, mixed and incubated in dark for 30 min at 25°C. Wells were washed out again as above described. A 100 μL of conjugate solution was then added to each well, mixed gently and incubated in dark for 15 min at 25°C, then washed out twice again. A 100 μL of substrate/chromogen solution was then added to each well, mixed gently and incubated in dark for 15 min at 25°C, followed by adding 100 μL of the stop solution (H2SO4) to each well. The absorbance was measured at 450 nm in Biotech-XLD800 Multi Scan Plate Reader (Biotech, VA, USA), and the absorption intensity was inversely proportional to samples AFM1 contents. AFM1 sheet supplied with the kit was used to generate a standard curve and to calculate the concentration of AFM1 in the samples.

Analysis of AFM1 by competitive enzyme linked immunosorbent assay (ELISA)
Determination of AFM1 was carried out using Ridascreen Aflatoxin M1 competitive ELISA kit (Art No. R1121) from R-biopharm (Derm-Stadt, Germany), with detection limit of 5 ppt. Before use, the kit was kept at room temperature (20-25°C) for 1 h. For the preparation of standard curve, AFM1 standard solutions of 0, 5, 10, 20, 40, and 80 ppt were provided with the kit. Samples analysis was carried out according to the manufacturer’s instructions. Briefly: AFM1-microtiter plate was pipetted with 100 μL of antibody solution into each well. The plate was gently mixed by manual shaking and incubated for 15 min at 25°C, wells were then washed twice by 250 μL of washing buffer and tapped upside down vigorously against absorbent paper. A 100 μL of the standard solutions or prepared samples was added in duplicate to separate wells, gently mixed and incubated in dark for 30 min at 25°C. Wells were washed out again as above described. A 100 μL of conjugate solution was added into wells, gently mixed and incubated in dark for 15 min at 25°C, followed by adding 100 μL of the stop solution (H2SO4) to each well. The absorbance was measured at 450 nm in Biotech-XLD800 Multi Scan Plate Reader (Biotech, VA, USA), and the absorption intensity was inversely proportional to samples AFM1 contents. AFM1 sheet supplied with the kit was used to generate a standard curve and to calculate the concentration of AFM1 in the samples.

Infants estimated daily intake (EDI) of AFM1
The infants EDI of AFM1 was calculated from the daily intake of starter and follow-on formula, the average AFM1 level in IMF samples, and mean body weight (b.w.) for infants (Bogalho et al., 2018). The two daily IMF consumption estimates were considered: 150 mL/kg b. wt. (for babies of 6 months age with 6.5 kg b.w.) and 1 L (for infants of 12 months age with 8.2 kg b.w.). According to the IMF manufacturers, 4.5 g IMF was required to prepare 30 mL of ready milk formula. The EDI was calculated according to Bogalho et al. (2018):

\[
\text{EDI (ng/kg b.w./day)} = \frac{[\text{AFM1}] \times [\text{milk consumption}] }{[\text{b.w.}]}
\]

The percentage of TDI from consumption of IMF was calculated as follows:

\[
\text{TDI %} = \frac{\text{EDI}}{\text{TDI}} \times 100
\]

where TDI was derived from formula of Kuiper-Goodman (1990).

Table 1. Numbers (%) of AFM1 negative, non-violative-positive and violative-positive in milk samples.

<table>
<thead>
<tr>
<th>Milk type</th>
<th>No. samples</th>
<th>Negative (%)</th>
<th>Non-violative positive</th>
<th>Violative positive</th>
<th>Average ng/kg</th>
<th>Min – Max ng/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starter (0-6 months)</td>
<td>48</td>
<td>24 (50)</td>
<td>0</td>
<td>24 (50)</td>
<td>69.93±5.66</td>
<td><5 - 89.25</td>
</tr>
<tr>
<td>Follow up (6-36 months)</td>
<td>72</td>
<td>38 (52.77)</td>
<td>0</td>
<td>34 (47.22)</td>
<td>84.78±9.34</td>
<td><5 - 213.84</td>
</tr>
<tr>
<td>Total</td>
<td>120</td>
<td>62 (51.67)</td>
<td>0</td>
<td>58 (48.33)</td>
<td>74.26±7.54</td>
<td><5 - 213.84</td>
</tr>
</tbody>
</table>

Negative samples: samples with no detected aflatoxin; Non-violative-positive sample: samples with detected aflatoxin below 25 ng/kg; and Violative-positive: samples with aflatoxin exceeding 25 ng/kg.

Calculation of extrapolated values of aflatoxin B1 concentration in feeds
A linear relationship was proposed between the concentration of AFB1 in feeds consumed by animals like cows and AFM1 in milk and only 1.6% of ingested AFB1 is bio transformed to AFM1 by the dairy cattle (Pettersson, 1998). According to Price et al. (1985) the expected concentrations of AFB1 in animal feeds can be back calculated from the concentrations of AFM1 of IMF samples. Therefore, the values of AFB1 contamination in dairy animal feeds were back calculated by the formula given below:

\[
\text{AFB1 (μg/kg)} = \frac{[\text{AFM1 (ng/kg)} \times 100]}{1.6 \times 1000}
\]
Another study in Italy reported that AFM1 was found in 49 (53%) dry infant milk samples, with range of <1 - 79.6 ng/kg with mean level of 32.2 ng/kg (Galvano et al., 2001). In a Korean study, the incidence of AFM1 in IMF was 85% of the samples, with average of 46 ng/kg (Kim et al., 2000). Moreover, Baydar et al. (2007) found that 36.5 % of 63 IMF samples contained AFM1 between 0.06 - 0.32 ppb in Turkey. However, it is quite obvious and crucial that the contamination of IMF with AFM1 is an international problem, and the protection of infants and young children from AFM1 requires fundamental national and international cooperation and far-reaching revisions of national and international regulations and approaches of surveillance, toxicity and risk assessment of AFM1 (Juan et al., 2014).

Exposure assessment of Jordanian infants to AFM1 from IMF

Up to our best knowledge, this is the first ever study to assess the EDI of AFM1 by Jordanian infants. Unexpectedly, the current results revealed a high EDI and TDI % values of AFM1 for both age groups (6 and 12 months) (Table 2). EDI results were 1.573 and 1.551 ng/kg b.w./day for 6- and 12-months infants age, respectively. The current EDI values exceeded the international TDI values (0.2 ng/kg b.w./day) by 7.869 and 7.759 times for both age groups, respectively. In comparison to international problem over the long time of consuming milk by infants. In comparison to our results, Omar (2016) reported high-extrapolated AFBI values for fresh and pasteurized cow’s milk, the results ranged from 0.6 to 8.1 and 0.9 to 13.5 µg AFBI/kg, respectively. Current findings advise that the best measure to control AFM1 in IMF should start at the farm level to ensure the safety of milk used in IMF processing through controlling the contamination level of AFB1 in feeds by applying the good agricultural and good hygienic practices at the farm level.

Table 2. Estimated Daily Intake (EDI) and tolerable daily intake % (TDI %) of AFM1 by infants in Jordan.

<table>
<thead>
<tr>
<th>Age</th>
<th>Milk intake (weight of powder milk)</th>
<th>Average b.w. (kg)</th>
<th>EDI (ng/kg b.w./Day)</th>
<th>%TDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 months</td>
<td>975 mL (146.23 g)</td>
<td>6.5</td>
<td>1.573±0.154</td>
<td>786.9</td>
</tr>
<tr>
<td>I2 months</td>
<td>1000 mL (150 g)</td>
<td>8.2</td>
<td>1.551±0.171</td>
<td>775.9</td>
</tr>
</tbody>
</table>

Table 3. Extrapolated values of Aflatoxin B1 concentration in animal feeds in naturally contaminated IMF.

<table>
<thead>
<tr>
<th>Milk type</th>
<th>AFM1 (ng/kg)</th>
<th>AFB1 (µg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starter (0-6 months)</td>
<td><5 - 89.25</td>
<td><0.313 - 5.578</td>
</tr>
<tr>
<td>Follow up (6-36 months)</td>
<td><5 - 213.84</td>
<td><0.313 - 13.365</td>
</tr>
<tr>
<td>Total</td>
<td><5 - 213.84</td>
<td><0.313 - 13.365</td>
</tr>
</tbody>
</table>
ated storage at 4°C for 15 days. Inter J Dairy Tech 65:268-73.
Kumar V, Basu MS, Rajendran TP, 2008. Mycotoxin toxicity and mycotoxin in some commercially important agricul-