Analysis of a poultry slaughter process: Influence of process stages on the microbiological contamination of broiler carcasses

Denise Althaus, Claudio Zweifel, Roger Stephan
Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Switzerland

Abstract

In a large-scale Swiss poultry abattoir, a microbiological process analysis of broiler carcasses was performed. At each selected process stage (scalding, plucking, evisceration, washing, and chilling), 90 carcasses from 30 flocks were sampled and examined for Campylobacter, Salmonella, Escherichia coli, Enterobacteriaceae, and extended-spectrum β-lactamases-producing Enterobacteriaceae. With regard to Campylobacter counts on carcasses, plucking tended to slightly increase the results (on average by 0.4 log CFU/g), whereas mean counts from plucked and chilled carcasses were comparable (3.1 log CFU/g after plucking, 3.0 log CFU/g in the chiller). The Campylobacter results of chilled carcasses are thereby likely to comply with the newly defined requirements of the European Union (process hygiene criterion for Campylobacter). With regard to Escherichia coli and Enterobacteriaceae counts on carcasses, plucking clearly reduced the results (on average by 0.8 and 0.9 log CFU/g), whereas mean counts from plucked and chilled carcasses were comparable (3.4 and 3.5 log CFU/g after plucking, 3.4 log CFU/g in the chiller). In contrast, Salmonella spp. were not detected on broiler carcasses and extended-spectrum β-lactamases-producing Enterobacteriaceae only rarely (1.8%). Such abattoir-specific data are of central importance for the implementation of adequate measures in the slaughter process performance, a process analysis including the identification of operations increasing or decreasing the microbiological contamination of carcasses is required (Brown et al., 2000; Milios et al., 2014; Zweifel et al., 2014).

Some resistant strategies in the slaughter process performance and if necessary of central importance for assessment of Campylobacter counts on carcasses might cause a significant reduction in associated human cases (EFSA, 2011; Nauta et al., 2009; Rosenquist et al., 2003). Moreover, certain poultry slaughterhouses are more successful than others in containing the Campylobacter contamination of carcasses (EFSA, 2010b; Habib et al., 2012a).

With the required monitoring of Salmonella and the planned introduction of Campylobacter as process hygiene criteria for slaughtered broilers in the European Union (EU), microbiological data are also required for the implementation of adequate measures in the slaughter process. The present study was performed in a large-scale poultry abattoir and the aim was to investigate the effects of selected slaughter operations on the microbiological contamination of broiler carcasses (selected foodborne pathogens and indicator bacteria).

Materials and Methods

Sampling

Broiler carcasses were sampled at five slaughter process stages: after scalding, after plucking, after evisceration, after washing, and in the chiller. At each stage, 90 carcasses from 30 flocks were sampled during 10 sampling days. Each carcass sample consisted of pooled neck and breast skin. In addition, 30 scalding water samples (15 per scalding tank) were collected during five sampling days.

Microbiological examinations

Samples were analyzed qualitatively for Salmonella spp. and quantitatively for Campylobacter spp., Escherichia (E.) coli, Enterobacteriaceae, and extended-spectrum β-lactamases (ESBL)-producing Enterobacteriaceae. The qualitative examination for Salmonella spp. was done in accordance with ISO 6579:2007-10 with a modification. Briefly, a subset of each carcass sample (10 g) or of each scalding water sample (10 mL) was enriched (24 h, 37°C) at a 1:10 ratio in buffered peptone water (Oxoid, Pratteln, CH). From the first enrichment, 0.1 mL were incubated (24 h, 41.5°C) in 10 mL of Rappaport-Vassiliadis broth (Oxoid). The enriched samples were subcultured (24 h, 37°C) on xylose-lysine-desoxycholate (XLD) agar (Bio-Rad, Reinach,
Results and Discussion

Microbiological slaughter process analysis: Salmonella spp. and Campylobacter spp.

While Salmonella spp. were not detected (after enrichment) in any of the 450 samples from broiler carcasses, 131 (29%) of all carcasses showed Campylobacter counts above the detection limit. At the different process stages, the proportion Campylobacter-positive carcasses ranged from 11 to 42% (Table 1). Because consumer risks seem mainly associated with highly contaminated products, the distribution of Campylobacter counts at different ranges is of importance. The distribution of counts at different ranges is shown in Table 1. Over all process stages, 50% of the Campylobacter-positive carcasses showed counts <3.0 log CFU/g and 42% between 3.0 and 4.0 log CFU/g. After scalding, Campylobacter counts averaged out at 2.7 log CFU/g (Table 1, Figure 1). Plucking tended to increase and washing to reduce the counts (on average by 0.4 log CFU/g), whereas results remained mainly constant by evisceration and chilling. The resulting mean count of chilled carcasses was 3.0 log CFU/g. With regard to Campylobacter and poultry slaughter, the available literature often showed common trends: reductions by scalding, rather increases by plucking, no changes or increases by evisceration, and reductions by washing and chilling (Berghaus et al., 2013; Duffy et al., 2014; Guerin et al., 2010; Huang et al., 2017; Pacholewicz et al., 2015b; Rosenquist et al., 2006; Selwiworst et al., 2015). However, direct comparisons are often hampered because the effect of a certain process stage on Campylobacter strongly depends on the respective conditions (e.g. temperature and time conditions used for scaling, varying washing steps, differing chilling methods).

Furthermore, microbiological criteria for Campylobacter spp. on slaughtered broilers have been recently investigated (Comin et al., 2014; EFSA, 2011; Lee et al., 2015; Nauta et al., 2012). With a new amendment of Reg. (EC) No. 2073/2005 (EC, 2005), the EU plans to implement a quantitative process hygiene criterion for Campylobacter on broiler carcasses after chilling. The amendment lays down requirements in view of sampling, sampling plans, sample processing, microbiological examinations, evaluation of results, and corrective actions (Table 2). Campylobacter results are thereby rated as satisfactory if not more than 20 (40%) of 50 samples (one sample consists of three neck skin samples from one flock) from 10 consecutive samplings show counts >1000 CFU/g (n=50, c=20). Thereby, it must be considered that i) countries with more favorable Campylobacter contamination levels may apply stricter c values and ii) c values will be reduced 2020 (c=15) and 2025 (c=10). Although the design of the present study does not fully correspond with the EU requirements, the results of the chilled carcasses were evaluated on the basis of the defined EU limits. Of the 90 chilled broiler carcasses (Table 1), only 12 (13%) showed

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>Process stage</th>
<th>Results ≥ detection limit</th>
<th>Counts</th>
<th>Number (%) of carcasses with counts ≥detection limit at different ranges (log CFU/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Carcasses, %</td>
<td>Flocks, %</td>
<td>SD</td>
</tr>
<tr>
<td>Campylobacter</td>
<td>After scalding</td>
<td>11.1</td>
<td>26.7</td>
<td>2.69</td>
</tr>
<tr>
<td></td>
<td>After plucking</td>
<td>42.2</td>
<td>53.3</td>
<td>3.13</td>
</tr>
<tr>
<td></td>
<td>After evisceration</td>
<td>41.1</td>
<td>50.0</td>
<td>3.20</td>
</tr>
<tr>
<td></td>
<td>After washing</td>
<td>23.3</td>
<td>40.0</td>
<td>2.77</td>
</tr>
<tr>
<td></td>
<td>In the chiller</td>
<td>27.8</td>
<td>36.7</td>
<td>2.99</td>
</tr>
<tr>
<td>E. coli</td>
<td>After scalding</td>
<td>94.4</td>
<td>100</td>
<td>4.16</td>
</tr>
<tr>
<td></td>
<td>After plucking</td>
<td>92.2</td>
<td>100</td>
<td>3.37</td>
</tr>
<tr>
<td></td>
<td>After evisceration</td>
<td>96.7</td>
<td>100</td>
<td>3.75</td>
</tr>
<tr>
<td></td>
<td>After washing</td>
<td>91.1</td>
<td>100</td>
<td>3.34</td>
</tr>
<tr>
<td></td>
<td>In the chiller</td>
<td>82.2</td>
<td>96.7</td>
<td>3.41</td>
</tr>
<tr>
<td>Enterobacteriaceae</td>
<td>After scalding</td>
<td>90.0</td>
<td>96.7</td>
<td>4.42</td>
</tr>
<tr>
<td></td>
<td>After plucking</td>
<td>93.3</td>
<td>96.7</td>
<td>3.52</td>
</tr>
<tr>
<td></td>
<td>After evisceration</td>
<td>97.8</td>
<td>100</td>
<td>3.83</td>
</tr>
<tr>
<td></td>
<td>After washing</td>
<td>94.4</td>
<td>100</td>
<td>3.34</td>
</tr>
<tr>
<td></td>
<td>In the chiller</td>
<td>87.8</td>
<td>100</td>
<td>3.39</td>
</tr>
</tbody>
</table>

*χ and SD, mean log CFU/g and standard deviation of results ≥detection limit (2.3 log CFU/g). aCampylobacter: 131 carcasses with ≥2.3 log CFU/g. E. coli: 411 carcasses with ≥2.3 log CFU/g. Enterobacteriaceae: 417 carcasses with ≥2.3 log CFU/g.
Campylobacter counts ≥1000 CFU/g and only nine (10%) of them exceeded 1000 CFU/g. Looking at sets of consecutive 50 samples (moving window: samples 1-50, 6-55, etc.), in each case only five (10%) exceeded 1000 CFU/g. Thus, the Campylobacter results of chilled carcasses likely comply with the EU limits. First experiences with a newly implemented Campylobacter performance target using to a certain degree a similar approach have recently been reported from New Zealand (Lee et al., 2015).

Microbiological slaughter process analysis: Escherichia coli and Enterobacteriaceae

E. coli and Enterobacteriaceae were used as indicator of fecal contamination on broiler carcasses. Of the 450 carcasses, 91% and 93% showed counts above the detection limit for E. coli and Enterobacteriaceae, respectively. The distribution of counts at different ranges is shown in Table 1. During the slaughter process, trends and counts were comparable for E. coli and Enterobacteriaceae (Figure 1). Enterobacteriaceae were therefore mainly E. coli.

After scalding, E. coli and Enterobacteriaceae counts averaged out at 4.2 and 4.4 log CFU/g, respectively (Table 1, Figure 1). Plucking reduced the counts (on average by 0.8 and 0.9 log CFU/g; P<0.05), probably due to physical removal. Pacholewicz et al. (2015b) recently also reported reductions by plucking, whereas an earlier study described an opposite effect (Berrang and Dickens, 2000). In the present study, evisceration slightly increased the counts (on average by 0.4 and 0.3 log CFU/g; P<0.05 for E. coli), whereas washing tended to reduce the counts (on average by 0.4 and 0.5 log CFU/g; P<0.05). Thus, as described previously (Berrang and Dickens, 2000; Pacholewicz et al., 2015b), evisceration operations were performed without extensive additional fecal contamination. By washing with cold water probably rather redistributions than real reductions were achieved (Loretz et al., 2010). Using air chilling with an usually limited microbial effect (James et al., 2006), results remained mainly constant and resulting mean E. coli and Enterobacteriaceae counts of chilled carcasses were 3.4 log CFU/g.

Microbiological slaughter process analysis: extended-spectrum β-lactamases-producing Enterobacteriaceae

With regard to antibiotic resistance, ESBL-producing Enterobacteriaceae are currently of special concern (Seiffert et al., 2013). With regard to foods of animal origin, in particular healthy chickens as carriers and contaminated poultry products are

![Figure 1. Mean Campylobacter, Escherichia coli, and Enterobacteriaceae counts from broiler carcasses with results ≥2.3 log CFU/g: (a) after scalding, (b) after plucking, (c) after evisceration, (d) after washing, and (e) in the chiller (error bars represent 95% confidence intervals).](image-url)
currently in the focus (Abgottspon et al., 2014; Geser et al., 2012). A high prevalence of 63% (flock level) was recently reported by examining chicken fecal samples collected at slaughter with an enrichment step (Geser et al., 2012). In the present study, ESBL-producing Enterobacteriaceae (CTX-1 producing Escherichia coli and CTX-1 producing Enterobacter aerogenes) were found quantitatively on only eight (1.8%) broiler carcasses (seven from one sampling day and six from the same flock) and counts ranged from 2.3 to 3.9 log CFU/g. None of the final chilled carcasses tested positive. In contrast, Pacholewicz et al. (2015a) could recently enumerate ESBL-producing E. coli in 82% of 620 samples collected through processing in two broiler slaughterhouses in Germany and the Netherlands.

Scalding water

In the examined poultry abattoir, a two-segment scalding system was used. Such systems are intended to expose the carcasses to less and less contaminated scalding water (Cason et al., 2000; Hinton et al., 2004). In accordance, Campylobacter, E. coli, and Enterobacteriaceae counts were lower (P<0.05) in the second scalding tank than in the first scalding tank. Differences of mean Campylobacter, E. coli, and Enterobacteriaceae counts thereby accounted for 1.0, 1.0, and 0.8 log CFU/mL, respectively (Table 3). To assess the effect of scalding and the respective parameters (in particular exposition temperature and time), further investigations including carcasses before and after scalding are required. Furthermore, one scalding water sample was positive for Salmonella spp. and one for ESBL-producing Enterobacteriaceae. The Salmonella isolate was identified as Salmonella enterica subsp. enterica 4,12:i:-.

Conclusions

A quantitative microbiological process analysis of broiler carcasses was performed at selected stages (scalding, plunging, evaporation, washing, chilling) in a large-scale poultry abattoir. Campylobacter spp. were found at the different stages on 11% (after scalding) to 42% (after plunging) of the carcasses. With regard to Campylobacter counts on carcasses, plunging tended to slightly increase the results (on average by about 3.4 log CFU/g). Commonly minor changes occurred at the following stages and mean counts from plucked and chilled carcasses were similar (about 3.0 log CFU/g). Although not directly comparable, Campylobacter results of chilled carcasses are likely to comply with the newly defined EU requirements (process hygiene criterion for Campylobacter). E. coli and Enterobacteriaceae were found in remarkable frequencies and counts in the poultry slaughter process. With regard to E. coli and Enterobacteriaceae counts on carcasses, plucking clearly reduced the results (on average almost by one order of magnitude). Some process stage-specific changes were evident in the following, but mean E. coli and Enterobacteriaceae counts from plucked and chilled carcasses were similar (about 3.4 log CFU/g). On the other hand, Salmonella spp. and ESBL-producing Enterobacteriaceae were not or only rarely detected on the broiler carcasses. Such abattoir-specific microbiological data from carcasses form the basis for assessment of slaughter process performance, are of central importance for the implementation of HACCP-based systems, and allow if necessary (e.g. non-compliance with process hygiene criteria) to take targeted measures at selected slaughter process stages.

References


EFSA, 2010a. Scientific opinion on quantification of the risk posed by broiler meat to human campylobacteriosis in the EU. EFSA J 8:1437.

EFSA, 2010b. Analysis of the baseline survey on the prevalence of Campylobacter in broiler batches and of Campylobacter and Salmonella on broiler carcasses, in the EU, 2008; part B: analysis of factors associated with Campylobacter colonization of broiler batches and with Campylobacter contamination of broiler carcasses; and investigation of the culture method diagnostic characteristics used to analyze broiler carcass samples. EFSA J 8:1522.

EFSA, 2011. Scientific opinion on Campylobacter in broiler meat production: control options and performance objectives and/or targets at different stages of the food chain. EFSA J 9:2105.


Habit I, Berkvens D, De Zutter L, Dierick K, Van Huffel X, Speybroeck N, Geeraert AH, Uytendaal M, 2012. Campylobacter contamination in broiler carcasses and correlation with slaugh-


