Treatment with lipid therapy to resuscitate a patient suffering from toxicity due to local anesthetics

Manuel Monti, Alessio Monti, Francesco Borgognoni, Giovanni Maria Vincentelli, Federico Paoletti
1Emergency Department, Local Health Unit UMBRIAI, Assisi; 2Department of Engineering, Roma Tre University, Rome; 3Emergency Department, Fatebenefratelli Hospital, Rome, Italy

Abstract

Recently, although without a universal recognition, the use of lipid emulsions as a rescue therapy for the bupivacaine cardiac toxicity has been proposed. In this article we report a successful resuscitation of a patient after the injection of bupivacaine in emergency room and a commented review of the related literature. The patient is a 73 years old man that, after a subcutaneous injection of bupivacaine (0.5%, i.e. 0.5 mL/h), developed circulatory arrest. After the failure of the initial treatment based on the advanced life support protocol, we have successfully performed a therapy with lipid emulsion. The bupivacaine intravascular injection, together with its interaction with amitriptyline and carbamazepine, could lead to cardiac depression, severe arrhythmias, hypotension, and/or cardiac arrest. In the case of failure of traditional life support treatment, intravenous lipid emulsion proves to be the best therapy to treat bupivacaine systemic toxicity.

Introduction

Local anesthetics (LAs) are frequently used in emergency therapy.1,2 They generally exhibit a low incidence of adverse events, but they have a very high mortality rate.2,4 Local anesthetics have common features: they are all composed of three chemical groups and produce a reversible inhibition of the sensory conduction of the nerve impulse at the regional level by selectively blocking sodium channels in the membrane (Figure 1). In particular, local anesthetics hinder the propagation of the action potential along the axon. This effect provokes the inhibition of the sodium channels by acting on specific receptors. Under quiescent condition, LA has a reduced functionality but, during depolarization, LA binds to the sodium receptor and it further decreases the sodium stream.2 This indicates that LA has different binding affinities depending on the conformation of the channel and, in particular, LAs are greater when the channel is depolarized. The first studies about the systemic toxicity of local anesthetics were done by Murloy.3,4 More recently, Lee,6 performing a study named Closed Claims Database for the American Society of Anaesthesiology and using data from 1980 to 2000, pointed out that the toxicity of LA is the main cause of brain damage or death. Although it is difficult to calculate the precise impact of LA systemic toxicity, many studies on animals have established the direct effect of LAs on the systemic reaction.2,6,7 The organs mainly affected by LA toxicity are the central nervous and the cardiovascular system. Toxicity depends on many factors, among which the most important ones are the plasma concentration, the time required to reach the peak concentration, the drug type, the characteristics and the co-morbidities of the patient, apart from the way of administration.8 Between the main manifestations of neurotoxicity, it is possible to include partial seizures and fasciculations and, with an increasing dose, a generalized tonic-clonic seizures until reaching a central nervous system (CNS) depression state.5,9,9 The cardiovascular system is less resistant to bupivacaine if compared to other anesthetics,11 and the toxic manifestations include deep sinus bradycardia, elongation of the PQ interval, QT and QRS complex to atrioventricular block and, finally, asystole and hypotension.12 Recent studies indicate that, beside the blockage of sodium the channel, LAs also act in the mechanisms of potassium and calcium channels and they are responsible of some alterations in the mitochondrial metabolism as well as in the ATP production.13

In 1998, in an experiment on animal in vivo, Weinberg was the first to demonstrate the efficacy of the intravenous lipid emulsion (ILE) in the treatment of cardiac arrest induced by a bolus of bupivacaine.1 Subsequent case reports15,19 have validated the clinical use of ILE in the treatment of severe systemic toxicity due to local anesthetics. The effectiveness mechanisms of the ILE treatment against the toxicity of local anesthetics have not been yet clarified, but, probably, one of the dominant effects of the emulsion is the lipid intravascular expansion that is able to absorb the offending circulating lipophilic toxin and to reduce, in this way, their concentration in the sites of action (lipid sink theory).2,10 The hypothesized mechanism is schematized in Figure 2. At this regard, we observe that Mazoit et al.15 have studied the different formulations of fat emulsion used in the treatment of the local anesthetics toxicity and they have concluded that the formulations consisting of long-chain fatty acids are about 2.5 times more effective compared to that consisting of a mixture of fatty acids 50/50 long and media chain.

Case Report

The patient was a 73-year-old, 75 kg, 176 cm, male, that arrived at the emergency department for a major wound involving the skin and subcutaneous tissue (width 10 cm, length 5 cm) on the left leg. After his arrival in the emergency area, the patient showed the following clinical conditions: heart rate (HR) of 80/min, sinus rhythm, SpO2 100, noninvasive blood pressure (NIBP) 128/82 mmHg, peripheral pulse was palpable, capillary refill time was normal. Regarding his medical history, the patient did not report significant events except for a previous diagnosis of fatty liver, arterial hypertension treated with angiotensin-converting-enzyme inhibitors and a chronic neuropathic pain treated with amitriptyline and carbamazepine. We performed therapy with local anesthetic (bupivacaine 0.5%, i.e. 0.4 mL/kg) and we began the wound suturing.
Approximately 30 seconds after anaesthesia, the patient has abruptly lost consciousness and has developed a tonic-clonic seizure. An oxygen treatment was immediately started using a facemask attached to a self-inflating resuscitation bag. About 90 seconds later, the tonic-clonic seizure was interrupted and the patient remained unconscious.

Immediately, we have applied to the patient the patches of a Zoll biphasic defibrillator that have shown an asystolic cardiac rhythm. Moreover, it was not possible to detect blood pressure. Advanced cardiac life support (ACLS) was immediately started by performing chest compressions. The patient was intubated and the tube position was confirmed by auscultation. During the first 20 minutes of the ACLS, a total of 3 mg epinephrine, given in three doses, was administrated to the patient without noticing an improvement of the clinical situation.

Since there was no response with the normal protocol of cardiac advanced support, we have used an initial intravenous bolus injection of 20% lipid emulsion 1.5 mL/kg over 1 min (Intralipid®; Fresenius Kabi, Bad Homburg, Germany) followed by administration of 100 mL/h of lipid emulsion, while continuing cardiopulmonary resuscitation. After 5 minutes of lipid administration, the electrocardiogram tracing was reassessed and it showed a shockable rhythm (Figure 3), which was converted through the technique of biphasic defibrillation (200 J). After 2 minutes of revaluation, we have noticed the presence of a sinus rhythm and of the carotid pulse. After the described emulsion lipid therapy, vital parameters were: HR 158/min, sinus rhythm NIBP 120/68 mmHg, SpO₂ 100 on O₂, RR-24/min. Blood tests are shown in Table 1. Thereafter, the patient remained hemodynamically stable. He has not required further inotropic/vasoactive medications during his persistence in the emergency department. An infusion of lipid emulsion was started and continued at 0.5 mL×kg⁻¹×min⁻¹ over the following 2 h and then discontinued. He was weaned from mechanical ventilation and extubated approximately 2.5 h later.

Then, the patient was transferred to the intensive care unit in stable conditions with a normal sinus rhythm (Figure 4) and, after one month, he was discharged with no neurologic abnormalities.

Discussion
Bupivacaine was first synthesized in 1963 and, since then, it has been used in many applications including local anaesthesia. In addition to its local anesthetic effect, it is a strong depressant of electric conduction which predisposes the heart to arrhythmias.₂₈ The toxic dose of bupivacaine is generally 1.5 mL/kg. In our case, it is a very unusual that a low dosage of bupivacaine 0.5% (0.5 mL/kg) has given such dramatic effects. In our opinion, there are several causes that could explain these tragic consequences. In particular, the local anesthetics toxicity probably has depended on the unintentional fast intravenous injection (considering the emergency department where we have operated) that, as already described in other studies,₂₉ and is responsible of toxicity effects on the cardiac function (hypotension, arrhythmia, etc.) and on the CNS.₉⁻₃₀ Moreover, we noted that the rapid appearance of cardiovascular depressant effect of the LA agent affects, as a probably contributory cause, the association among bupivacaine, carbamazepine and amitriptyline.
Table 1. Blood test results.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Normal range</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.35</td>
<td>7.35-7.45</td>
</tr>
<tr>
<td>pCO₂ (mmHg)</td>
<td>37</td>
<td>35.00-45.00</td>
</tr>
<tr>
<td>pO₂ (mmHg)</td>
<td>75</td>
<td>80-100</td>
</tr>
<tr>
<td>Na⁺ (mEq/L)</td>
<td>135</td>
<td>136-145</td>
</tr>
<tr>
<td>K⁺ (mEq/L)</td>
<td>3.6</td>
<td>3.5-5.1</td>
</tr>
<tr>
<td>Glucose (mg/dL)</td>
<td>157</td>
<td>60-110</td>
</tr>
<tr>
<td>HCO₃ (mmol/L)</td>
<td>24.3</td>
<td>21-28</td>
</tr>
<tr>
<td>SO₂ (%)</td>
<td>98</td>
<td>75-89</td>
</tr>
<tr>
<td>Hct (%)</td>
<td>41</td>
<td>40-50</td>
</tr>
<tr>
<td>Hb (g/100 mL)</td>
<td>14.1</td>
<td>13-17</td>
</tr>
<tr>
<td>Lactate (mg/dL)</td>
<td>13</td>
<td>13-15</td>
</tr>
<tr>
<td>Albumin (µmol/L)</td>
<td>25</td>
<td>35-50</td>
</tr>
</tbody>
</table>

pCO₂, plasma carbon dioxide; pO₂, pressure of oxygen in the blood; HCO₃, bicarbonate; SO₂, sulfur dioxide; Hct, hematocrit; Hb, hemoglobin.

In fact, the unusual combination of the amitriptyline and carbamazepine,²¹,²² used for chronic neuropathic pain, can exacerbate bupivacaine toxicity. As it is well known, amitriptyline is a pharmacologically weak base capable of accepting protons to become cationic, thus generating an acidic environment. This effect may induce a reduction of the bupivacaine lipophilicity with a consequent increase in the active bupivacaine concentration. This phenomenon has been first observed by Strichartz, who demonstrated an increase of the aqueous:octanol partitioning of bupivacaine in case of pH reduction,²³ and confirmed by Mazoit et al.²⁴

Moreover, carbamazepine is able to reduce the propagation of abnormal impulses in the brain, by blocking sodium channels, and to interfere with the action potential of the Purkinje fibers and of the bundle of His, leading, finally, to arrhythmias and arrhythmias.²⁵ In our case, characterized by a high-level of active bupivacaine concentration, the carbamazepine could have facilitated the appearance of tonic-clonic seizure and ventricular fibrillation.

Finally, our patient had an undiagnosed severe hypoalbuminemia (2.5 g/dL) that could have definitely increased the toxic effect of the anesthetic.²⁶

References

19. Warren JA, Thoma RB, Georgescu A, Shah SJ. Intravenous lipid infusion in the suc-