

Patricia Granauro,¹ Vincenzo Di Comite,² Giuseppe Lippi,³ Umberto Marzi,⁴ Gianfranco Cervellin¹

¹Emergency Department, University Hospital of Parma, Parma; ²Internal Medicine Unit, University Hospital of Parma, Parma; ³Section of Clinical Chemistry, University of Verona, Verona; ⁴Intensive Care Unit, University Hospital of Parma, Parma, Italy

Abstract

The article describes a case of severe acute lactic acidosis and hypoglycemia after intentional ingestion of tramadol overdose.

Introduction

Tramadol is a widely used synthetic, centrally acting analgesic with both opioid and nonopioid actions.^{1,2} The drug has low affinity for u- and k-opioid receptors, and exerts inhibitory effects of the reuptake of both norepinephrine and serotonin (5-hydroxytryptamine).² It has also been demonstrated that tramadol stimulates the dopamine (D2) receptors and inhibits the gamma amino butyric acid (GABA) release in central nervous system.3,4 This pharmacodynamic complexity translates into a wide range of clinical actions and even toxic effects, which are often not fully predictable. Briefly, tramadol is an increasingly used analgesic drug, available as both parenteral and enteral formulations, originally introduced in Germany in the late 1970s as a weak opioid with atypical clinical profile.5 Common therapeutic doses of tramadol are comprised between 100 and 400 mg/day. 2,6

Up to 90% percent of tramadol is excreted in the urine, ~30% of which as unmetabolized drug. About 10% is metabolized by N- and Odemethylation, followed by conjugation with glucuronic acid and sulfate. O-desmethyltramadol (ODT) is an active metabolite displaying 2 to 4 times the analgesic activity of the parent drug and longer half-life, so sharing also some toxic effects of the parent compound.^{7,8}

Soon after the approval, tramadol abuse, misuse, and overdose have been increasingly observed worldwide due to its opioid properties.⁹⁻¹¹ The most frequent side effects at therapeutic dosages include nausea, dizziness, somnolence, drowsiness, enhanced sweating, vomiting and dry mouth.^{12,13} Both in therapeutic and toxic doses, seizure and apnea have been reported as the most severe adverse reactions,^{9,10,14} along with hypoglycemia, hyperamylasemia, liver and kidney dysfunctions.^{15,16} As such, evaluation of laboratory findings including plasma electrolytes, blood gas analysis, kidney and liver function tests play a pivotal role for patient monitoring in the suspicion or confirmed diagnosis of tramadol poisoning and/or toxicity.

We describe here a case of severe lactic acidosis triggered by a tramadol intentional overdose.

Case Report

A 33-year-old man was brought to the Emergency Department (ED) of the Academic Hospital of Parma for stupor and respiratory depression. He was usually taking clonazepam, trazodone and biperidene, all administered at appropriate dosage by prison officers, since the time he has been jailed, 3 years before. At ED presentation the patient was unresponsive, midriatic, bradypneic, normotensive (110/60 mmHg). No convulsions have been witnessed and/or recorded. Immediately after ED admission, abundant vomiting of gastric juice started. The patient was hence immediately treated with intravenous (i.v.) glucose 33% 20 mL, naloxone 0.8 mg and flumazenil 1 mg, obtaining only a partial response. An additional dose of naloxone 0.8 mg i.v. was then administered, obtaining a relative full recovery of consciousness. A gastric lavage and an administration (through naso-gastric tube) of activated charcoal 50 g were then established, followed by administration of magnesium sulphate 30 g. Two hours later the patient become again unresponsive, thus leading to the additional administration of naloxone 0.8 mg, which was followed by prompt clinical response. The essential blood tests were characterized by: neutrophilic leukocytosis (WBC 21.1x10⁹/L; neutrophils 16. 8x10⁹/L); hypoglycemia (serum glucose 39 mg/dL); acute renal failure (serum creatinine 2.7 mg/dL; eGFR assessed with to the CKD-EPI equation, 32 mL/min); slight increase of lipase (64 U/L; upper limit of the reference range, 58 U/L); moderate increase of troponin I (1.2 ng/mL, upper limit of the reference range, 0.05 ng/mL); moderate and transient increase of alanine-aminotransferase (ALT; 471 U/L; upper limit of the reference range, 40 U/L); slight positivity for quantitative benzodiazepines and/or their metabolites assay in urine; ethanol was absent in the blood sample. We did not search for salicylates, metformin, and iron (all potential triggers of lactic

Correspondence: Gianfranco Cervellin, Emergency Department, University Hospital of Parma, via Gramsci 14, 43126, Parma, Italy. Tel: +39.0521.703174 – Fax: +39.0521.702617. E-mail: gcervellin@ao.pr.it

Key words: Tramadol; Poisoning; Intoxication; Metabolic acidosis; Lactic acidosis.

Received for publication: 1 December 2015. Revision received: 20 April 2016. Accepted for publication: 20 April 2016.

This work is licensed under a Creative Commons Attribution 4.0 License (by-nc 4.0).

©Copyright P. Granauro et al., 2016 Licensee PAGEPress, Italy Emergency Care Journal 2016; 12:5659 doi:10.4081/ecj.2016.5659

acidosis), since the patient did not have access to these drugs (he was jailed, as previously reported). The value of creatine kinase (CK), a well-established biomarker of rhabdomyolysis (*i.e.*, a frequent complication of opioid and tramadol overdose),^{17,18} was normal. The electrocardiogram (ECG) remained always normal. An echocardiogram, prescribed to investigate the nature of the troponin increase, failed to show contractility defects. A severe and worsening lactic acidosis, initially associated with respiratory acidosis, was however observed (Table 1), and slowly improved during the first 24 hours of hospital staying.

Approximately 2 hours after ED admission, a prison officer brought to the emergency physician six empty bottles of tramadol (drops) detected in the jail cell of the patient, corresponding to a total dosage of ~6000 mg. No other substances were found in the prison. The officer also informed us that the patient ate some food (an usual dinner) about 7 hours before the clinical manifestations. He also confirmed, with provisional documentation, that the patient did not suffer from other diseases. A frozen vial of the patient's blood was then sent to a specialized laboratory for assessment of tramadol and O-demethyl-tramadol (the main metabolite), which vielded blood concentrations of 26.1 mg/dL of tramadol (largely exceeding the serum therapeutic ranhe of 0.28-0.61 mg/dL) and 5.3 mg/dL of O-demethyltramadol, respectively.¹⁹ Interestingly, it was lately found that the patient had obtained the tramadol bottles by another jailed man, who was using the drug for chronic post-traumatic pain.

During the hospital staying the patient underwent a magnetic resonance imaging (MRI) of the brain, heart and abdomen, which did not show any pathological findings.

Discussion

Hypoglycemia has been extensively described as a possible, albeit rare, adverse effect of tramadol, even at therapeutic dosages, surprisingly especially in patients without a history of diabetes mellitus, and not taking anti-diabetic drugs.²⁰ Our case is, however, the very first case report of severe acute lactic acidosis triggered by tramadol, although in presence of concomitant transient and promptly corrected hypoglycemia.

Theoretically, some metabolic interactions between tramadol and the other drugs taken by the patient (in particular clonazepam that is extensively metabolized in the liver) are conceivable, but unfortunately it was impossible for us to demonstrate this possibility.

It is also conceivable that some form of interaction between tramadol and trazodone (chronically taken by the patient at therapeutic dosages) could be occurred, but we obviously did not have the resources to demonstrate it.

A single case of tramadol toxicity leading to refractory shock and asystole has been previously described.²¹ The patient, however, took a massive overdose of tramadol, alongside with hydroxyzine, gabapentin, and clonazepam. He had a long-lasting seizure, hypotension, hypothermia, and a prolonged QTc at the ECG, thus showing several clinical characteristics that clearly distinguished he from the case here described.

Conclusions

In conclusion, tramadol poisoning should always be considered in the differential diagnosis of metabolic (most of all lactic) acidosis, especially when obvious or alternative diagnoses are unlikely.

References

- 1. Shipton EA. Tramadol: present and future. Anaesth Intens Care 2000;28:363-74.
- Grond S, Sablotzki A. Clinical pharmacology of tramadol. Clin Pharmacokinet 2004;43:879-923.
- Rehni AK, Singh I, Kumar M. Tramadolinduced seizurogenic effect: a possible role of opioid-dependent gamma-aminobu-

Table 1. Blood gases and acid-base balance values during the first day of hospital staying.

	Time (h.min)					
	9.49	11.01	12.13	12.51	17.27	22.05
рН	7.007	6.979	7.054	7.19	7.37	7.42
pCO ₂ (mmHg)	60.1	67.7	48.1	45.2	44.9	44.8
pO ₂ (mmHg)	79.1	78.3	75.5	86.1	91.4	94.3
HCO_3 (mmol/L)	14.3	13.7	12.8	17.4	19.2	23.7
BE (mmol/L)	-18.2	-18.3	-17.9	-8.1	-4.9	-1.1
Na (mmol/L)	145	142	143	144	142	143
K (mmol/L)	3.8	4.5	4.8	4.7	4.6	4.6
Anion gap (mmol/L)	19.9	16.3	17.0	12.5	11.7	11.2
Lactate (mmol/L)	10.6	11.3	10.4	7.3	3.8	2.1
Glucose (mg/dL)	64	88	99	101	98	97

BE, base excess

tyric acid inhibitory pathway. Basic Clin Pharmacol Toxicol 2008;103:262-6.

- 4. Shadnia S, Brent J, Mousavi-Fatemi K, et al. Recurrent seizures in tramadol intoxication: implications for therapy based on 100 patients. Basic Clin Pharmacol Toxicol 2012;111:133-6.
- Friderichs E, Felgenhauer E, Jongschaap P, Osterloh G. Pharmacological investigations on analgesia and the development of dependence and tolerance with tramadol, a strongly acting analgesic. Arzneim-Forsch/Drug Res 1978;28:122-34.
- Scott LJ, Perry CM. Tramadol: a review of its use in perioperative pain. Drugs 2000;60:139-76.
- 7. De Decker K, Cordonnier J, Jacobs W, et al. Fatal intoxication due to tramadol alone: case report and review of the literature. Forensic Sci Int 2008;175:79-82.
- Mehvar R, Elliott K, Parasrampuria R, Eradiri O. Stereospecific high-performance liquid chromatographic analysis of tramadol and its O-demethylated (M1) and N,O-demethylated (M5) metabolites in human plasma. J Chromatogr B 2007;852: 152-9.
- 9. Shadnia S, Soltaninejad K, Heydari K, et al. Tramadol intoxication: a review of 114 cases. Hum Exp Toxicol 2008;27:201-5.
- Hassanian-Moghaddam H, Farajidana H, Sarjami S, Owliaey H. Tramadol-induced apnea. Am J Emerg Med 2013;31:26-31.
- 11. Perdreau E, Iriart X, Mouton JB, et al. Cardiogenic shock due to acute tramadol intoxication. Cardiovasc Toxicol 2015;15: 100-3.
- Götrick B, Tobin G. The xerogenic potency and mechanism of action of tramadol inhibition of salivary secretion in rats. Arch

Oral Biol 2004;49:969-73.

- 13. Rawal N, Macquaire V, Catalá E, et al. Tramadol/paracetamol combination tablet for postoperative pain following ambulatory hand surgery: a double-blind, doubledummy, randomized, parallel-group trial. J Pain Res 2011;4:103-10.
- Jovanovic-Cupic V, Martinovic Z, Nesic N. Seizures associated with intoxication and abuse of tramadol. Clin Toxicol 2006;44: 143-6.
- 15. El-Hussuna A, Arnesen RB, Rosenberg J. Tramadol poisoning with hyperamilasemia. Brit Med J Case Rep 2010;2010: 0320102821.
- Atici S, Cinel I, Cinel L, et al. Liver and kidney toxicity in chronic use of opioids: an experimental long term treatment model. J Biosci 2005;30:245-52.
- Cervellin G, Comelli I, Lippi G. Rhabdomyolysis: historical background, clinical, diagnostic and therapeutic features. Clin Chem Lab Med 2010;48:749-56.
- Khan FY, Yousef H, Errayes M. Tramadol toxicity-induced rhabdomyolysis. J Emerg Trauma Shock 2010;3:421-2.
- Clarkson JE, Lacy JM, Fligner CL, et al. Tramadol (Ultram) concentrations in death investigation and impaired driving cases and their significance. J Forensic Sci 2004;49:1101-5.
- Fournier JP, Azoulay L, Yin H, et al. Tramadol use and the risk of hospitalization for hypoglycemia in patients with noncancer pain. JAMA Intern Med 2015;175:186-93.
- 21. Daubin C, Quentin C, Gouillé JP, et al. Refractory shock and asystole related to tramadol overdose. Clin Toxicol 2007;45: 961-4.