DNA variation in myoMIRs of the 1, 133, and 208 families in hypertrophic cardiomyopathy

  • María Palacín Genética Molecular, Hospital Central Asturias, Spain.
  • Eliecer Coto | eliecer.coto@sespa.princast.es Genética Molecular, Hospital Central Asturias; Departamento Medicina, Universidad Oviedo, Oviedo; Red de Investigación Renal-REDINREN, Spain.
  • Julián R. Reguero Cardiología-Fundación Asturcor, Hospital Universitario Central Asturias, Spain.
  • María Martín Cardiología-Fundación Asturcor, Hospital Universitario Central Asturias, Spain.
  • César Morís Cardiología-Fundación Asturcor, Hospital Universitario Central Asturias; Departamento Medicina, Universidad Oviedo, Oviedo, Spain.
  • Belén Alonso Genética Molecular, Hospital Central Asturias, Spain.
  • Marta Díaz Genética Molecular, Hospital Central Asturias, Spain.
  • Ana I. Corao Genética Molecular, Hospital Central Asturias, Spain.
  • Victoria Alvarez Genética Molecular, Hospital Central Asturias, Spain.

Abstract

MicroRNAs (miRNAs) are small RNAs that bind to mRNAs and regulate gene expression. MyoMirs are miRNAs implicated in cardiogenesis. Some MyoMirs have been found deregulated in hearts from patients with left ventricular hypertrophy (LVH). DNA variants at these miRNAs could contribute to the risk of developing hypertrophic cardiomyopathy (HCM). To test this hypothesis we used single strand conformation analysis and direct sequencing to search for DNA variants in the mir-208a, miR-208b, miR-133a-1, miR-133a-2, miR-133b, miR-1-1, and miR-1-2 genes in patients with HCM (n=245), LVH secondary to hypertension (n=120), and healthy controls (n=250). We found several nucleotide variants. Genotyping of patients and healthy controls showed significantly associations between a 133a-1 polymorphism and HCM and a 133b polymorphism and hypertensive- LVH. We concluded that rare variants in these mature miRNAs would be rarely found among HCM patients, but miR-133a-1 and 133b polymorphisms could contribute to the risk of developing cardiac hypertrophy.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

References

Valencia-Sánchez MA, Liu J, Hannon GJ, Parker R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 2006;20:515-24.

Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. Embo J 2004;23:4051-60.

Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281-97.

Saunders MA, Liang H, Li WH. Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci U S A 2007;104:3300-5.

Duan R, Pak C, Jin P. Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA. Hum Mol Genet 2007;16:1124-31.

Arad M, Seidman JG,Seidman CE. Phenotypic diversity in hypertrophic cardiomyopathy. Hum Mol Genet 2002;11:2499-506.

Friddle CJ, Koga T, Rubin EM, Bristow J. Expression profiling reveals distinct sets of genes altered during induction and regression of cardiac hypertrophy. Proc Natl Acad Sci U S A 2000;97:6745-50.

van Rooij E, Sutherland LB, Liu N, et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A 2006;103:18255-60.

van Rooij E, Sutherland LB, Qi X, et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 2007;316:575-9.

Liu N, Williams AH, Kim Y, et al. An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133. Proc Natl Acad Sci U S A 2007;104:20844-9.

Care A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med 2007;13:613-8.

García-Castro M, Coto E, Reguero JR, et al. Mutations in sarcomeric genes MYH7, MYBPC3, TNNT2, TNNI3, and TPM1 in patients with hypertrophic cardiomyopathy. Rev Esp Cardiol 2009;62:48-56.

Coto E, Palacín M, Martín M, et al. Functional polymorphisms in genes of the Angiotensin and Serotonin systems and risk of hypertrophic cardiomyopathy: AT1R as a potential modifier. J Trans Med 2010;8:e64.

de Mena L, Coto E, Cardo LF, et al. Analysis of the Micro-RNA-133 and PITX3 genes in Parkinson's disease. Am J Med Genet B Neuropsychiatr Genet 2010;153B:1234-9.

Hu Z, Chen J, Tian T, et al. Genetic variants of miRNA sequences and non-small cell lung cancer survival. J Clin Invest 2008;118:2600-8.

Jazdzewski K, Murray EL, Franssila K, et al. Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci U S A 2008;105:7269-74.

Shen J, Ambrosone CB, DiCioccio RA, et al. A functional polymorphism in the miR-146a gene and age of familial breast/ovarian cancer diagnosis. Carcinogenesis 2008;29:1963-6.

Diederichs S, Haber DA. Sequence variations of MicroRNAs in human cancer: alterations in predicted Secondary Structure do not Affect processing. Cancer Res 2006;66:6097-104.

Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 2005;436:214-20.

Akazawa H, Komuro I. Roles of cardiac transcription factors in cardiac hypertrophy. Circ

Res 2003;92:1079-88.

Pikkarainen S, Tokola H, Kerkela R, Ruskoaho H. GATA transcription factors in the developing and adult heart. Cardiovasc Res 2004;63:196-207.

Arnett DK, de las Fuentes L, Broeckel U. Genes for left ventricular hypertrophy. Curr Hypertens Rep 2004;6:36-41.

Published
2011-11-15
Info
Issue
Section
Brief Reports
Supporting Agencies
Spanish Fonso de Investigaciones Sanitarias (Public Agencies)
Keywords:
microRNAs, myoMIRs, cardiac hypertrophy, DNA polymorphisms, genetic association.
Statistics
  • Abstract views: 823

  • PDF: 879
How to Cite
Palacín, M., Coto, E., Reguero, J., Martín, M., Morís, C., Alonso, B., Díaz, M., Corao, A., & Alvarez, V. (2011). DNA variation in myoMIRs of the 1, 133, and 208 families in hypertrophic cardiomyopathy. Cardiogenetics, 1(1), e12. https://doi.org/10.4081/cardiogenetics.2011.e12