A new clonal chromosomal aberration (47, XY, +21) in atrial myxoma from an elderly male patient

Ewa Stępień,1 Grzegorz Grudzień,2 Marek Andres,3 Małgorzata Jakóbczyk,4 Dorota Czapczak,5 Przemysław Kapusta,6 Wiesław Frasik,7 Tomasz Myrdko,2 Jerzy Sadowski2
1Department of Clinical Biochemistry; 2Department of Cardiac and Vascular Surgery and Transplantology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland; 3Center for Interventional Cardiology, John Paul II Hospital, Krakow, Poland; 4Department of Haematology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland; 5Laboratory for Research of Genetic Predisposition, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland; 6Laboratory for Molecular Biology and Research and 7Histopathology Unit, John Paul II Hospital, Krakow, Poland

Abstract

Myxomas are the most common primary cardiac tumors, with an estimated incidence of 0.5 per million per year. Familial myxoma constitutes 10% of all myxomas, among these tumors, one in ten is part of Carney complex - an autosomal dominant syndrome characterized by spotty pigmentation, cardiac and cutaneous myxomas, various endocadal overactivity and neoplasms, which are related to some mutations in the PRKARIA gene. PRKARIA is a tumor suppressor gene localized on chromosome 17q22-24, that encodes for the protein kinase A regulatory 1-alpha subunit. However, other chromosomal abnormalities, including those on chromosome 2 (2p16) are also possible. Cytological examination of cells harvested from atrial myxomas revealed many non-clonal chromosomal abnormalities involving chromosomes: 1, 7, 9, 10, 12, 17 and 20.11-13

In this article we describe the chromosomal pattern of a case of atrial myxoma, showing a novel clonal numerical aberration. Additionally, we present the results of flow cytometry analysis of cells isolated from the tumor.

Case Report

In June 2009, a 75-year-old man of Polish descent was admitted to the emergency ward after an episode of fainting. In addition, the patient complained of shortness of breath accompanied by occasional palpitations and dizziness. His medical history revealed hypertension, coronary artery disease and Parkinson’s disease. Physical examination revealed a high blood pressure (149/85 mm Hg) and a temperature of 37.2°C. Biochemical parameters on admission are presented in Table 1. The patient denied any history of cardiac tumors and there were no clinical features related to some mutations in the PRKARIA gene. PRKARIA is a tumor suppressor gene localized on chromosome 17q22-24, that encodes for the protein kinase A regulatory 1-alpha subunit. However, other chromosomal abnormalities, including those on chromosome 2 (2p16) are also possible. Cytological examination of cells harvested from atrial myxomas revealed many non-clonal chromosomal abnormalities involving chromosomes: 1, 7, 9, 10, 12, 17 and 20.11-13

Correspondence: Ewa Stępień, Katedra i Zakład Biochemii Klinicznej, Collegium Medicum Uniwersytetu Jagiellońskiego, ul. Kopernika 15A, 31-501 Kraków, Poland. Tel. +48 12 4248783; Fax: +48 12 4214006. E-mail: estepien@cm-uj.krakow.pl

Key words: atrium, cardiac surgery, haematopoietic progenitor cells, myxoma, trisomy.

Received for publication: 18 September 2011. Revision received: 7 February 2012. Accepted for publication: 10 February 2012.

This work is licensed under a Creative Commons Attribution NonCommercial 3.0 License (CC BY-NC 3.0).

[Cardiogenetics 2012; 2:e3] [page 11]
was gently dissected and digested for 48 hours at 37°C in collagenase Type II solution at a concentration of 200 U/mL (No. 17101-015, Invitrogen, Paisley, UK) dissolved in Dulbecco Modified Eagle Medium (GibCO® DMEM, No. 11960-044, Invitrogen, Paisley, UK) supplemented with 10% Fetal Bovine Serum (GibCO® FBS, No. 10100139, Invitrogen), 2 mM of L-Glutamine (No. G8540, Sigma-Aldrich, Steinheim, Germany) and antibiotics (50 U/mL penicillin, 50 μg/mL streptomycin, 0.1 mg/mL neomycin, Polfa Tarchomin, Poland). Digested tissue, for cytogenetic analysis, was squeezed through a 70-μm nylon mesh into the DMEM supplemented with 10% FBS to create a single cell suspension, centrifuged (220 g, 10 min), washed and cultured in a 25cm flask at 37°C in a humidified atmosphere (Figure 1). Mitotic arrest was achieved after 48 h of culturing by further overnight incubation with colcemid at a concentration of 0.01 μg/mL and GTG-banded metaphases were analysed. Complementary karyotype analysis was performed by fluorescence in situ hybridization method (FISH) with probes specific for LSI AML1(RUNX1). The analysis demonstrated a numerical aberration in atrial myxoma cells: 47,XY,+21 (Figure 2A, 2B). Because he had no phenotypical signs of Down syndrome a blood karyotype was not performed.

Flow cytometry analysis

The cell suspension was analyzed by means of the FACS Calibur instrument (BD Immunocytometry Systems, San Jose, USA). Cell-specific antibodies allowed the investigating of the hematopoietic phenotype of harvested cells: CD31 (PECAM-1) stained with fluorescein isothiocyanate (FITC, No. 560984, BD Bioscience; Erembodegem, Belgium) and CD34 stained with R-phycocerythrin (RPE, No. R712501, DakoCytomation; Glostrup, Denmark). The data was analysed using CellQuest Pro software (BD Immunocytometry Systems). It was observed that 26% of cells revealed hematopoietic progenitor potential – CD34+ (Figure 2C) and 22% of them were positive in endothelial specific antigen – CD31+ (Figure 2D).

Discussion

In this article, we report a case of an elderly male patient with a symptomatic atrial myxoma. Taking into consideration the age and the negative family history of the patient we assumed that our case was an example of a sporadic atrial neoplasm.

Histologically, cardiac myxomas are generally derived from subendocardial multipotential mesenchymal cells and imitate primitive mesenchyme. In our study we confirmed that a quarter of tumors cells were hematopoietic progenitor cells (CD34+) and that a similar number were endothelial specific neovascular cells (CD31+). CD34 is a 105- to 120-kD transmembrane cell surface glycoprotein, which is selectively expressed at its highest level on the

Table 1. Pre- and postoperative biochemical parameters of a surgical patient for atrial myxoma and coronary artery stenosis.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>On admission before surgery</th>
<th>13th day after surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC [10^3 cell/L]</td>
<td>10.5 H</td>
<td>9.8 H</td>
</tr>
<tr>
<td>Neutrophils [10^3 cell/L]</td>
<td>7.7</td>
<td>9.0</td>
</tr>
<tr>
<td>Lymphocytes [10^3 cell/L]</td>
<td>1.9</td>
<td>0.5</td>
</tr>
<tr>
<td>Monocytes, Basophils and others [10^3 cell/L]</td>
<td>0.9</td>
<td>0.3</td>
</tr>
<tr>
<td>Erythrocytes [10^12/L]</td>
<td>3.88 L</td>
<td>2.42 L</td>
</tr>
<tr>
<td>Haemoglobin [g/dL]</td>
<td>11.9 L</td>
<td>7.8 L</td>
</tr>
<tr>
<td>Haematocrit [%]</td>
<td>35.5 L</td>
<td>22.9 L</td>
</tr>
<tr>
<td>MCH [pg]</td>
<td>91.5</td>
<td>94.6</td>
</tr>
<tr>
<td>MCV [fL]</td>
<td>30.7</td>
<td>31.4</td>
</tr>
<tr>
<td>PLT [10^12/L]</td>
<td>140.0</td>
<td>107 L</td>
</tr>
<tr>
<td>MPV [fL]</td>
<td>10.3</td>
<td>10.1</td>
</tr>
<tr>
<td>CRP [mg/L]</td>
<td>41.4 H</td>
<td>207.1 H</td>
</tr>
</tbody>
</table>
| CK [U/L] | 302 H | 346 H *
| CK-MB [U/L] | 25 H | 22 H *
| cTnI [ng/mL] | 5.91 H | 3.56 H *
| GFR | 57.7 L | 12.4 L |
| Glucose [mmol/L] | 6.9 H | 27 H |
| Urea [mmol/L] | 7.7 H | 23.7 H |
| Na+ [mmol/L] | 141 | 145 |
| K+ [mmol/L] | 3.9 | 4.1 |

*Data collected during 2nd day after surgery. Abnormal values are marked as H – high or L – low according to a laboratory norm. CK, creatinine kinase; CK-MB, creatinine kinase muscle type izoenzyme; cTnl, cardiac troponin I; GFR, Glomerular filtration rate; kinase CRP, C-reactive protein; WBC, white blood cells; MCV, medium erythrocyte volume; MCH, medium hemoglobin weight in the erythrocyte; MPV, medium platelet volume; PLT, platelet number.

Figure 1. Primary cultures of cells harvested from an atrial myxoma excised from a symptomatic, 75-years-old-male patient. After collagenase Type II digestion, cells spontaneously formed aggregates and attached to a cell culture dish. Erythrocyte contamination was observed (0). On the first day of culturing, cells started to spread over the surface (24 h). After 48 h the cells presented their migratory phenotype.
im immature cells and decreases progressively with their development. CD34 antigen is a stage specific rather than a lineage-specific antigen, appears to be expressed on circulating peripheral blood cells in the adult and the number of CD34⁺ cells is decreased in severe congestive heart failure.¹⁵ These populations of hematopoietic progenitor cells (CD34⁺) and endothelial specific neovascular cells (CD31⁺) are likely derived from peripheral blood cells and may cover the tumor surface by monolayer to produce interspersed primitive blood vessels. These cells may also be dispersed in a myxoid matrix or form complex multilayer structures. However, the increased frequency of CD34⁺ cells is characteristic for malignant neoplasms of hematopoietic stem cells.

Diagnoses of cardiac myxoma

Familial myxomas are rare; their frequency does not exceed 1 in 10 cases of cardiac tumors, both in European and Asian populations.²,¹²,¹⁷ In the case of familial recurrent myxomas (Carney complex), their incidence appears to have autosomal dominant transmission with incomplete penetrance.²,¹² Despite the fact, that Carney complex can be characterized by specific clinical manifestations, treated family members require effective screening, including urinary free cortisol (Cushing syndrome), thyrotropin-releasing hormone, testicular or thyroid ultrasonography (other endocrinal abnormalities), routine echocardiographic screening and searches for cardiac and mucocutaneous myxomas in multiple locations. Thus, siblings (first-degree relatives) of an affected patient should be under medical care.igrams. Additionally, genetic testing for the inactivation of the PRKAR1α gene (sequencing or higher resolution banding) is recommanded.¹⁷,¹⁸ In cases of more often, non-familial cardiac myxomas, we cannot endorse genetic screening.

Genetics of cardiac myxoma

Analysis of diseased specific chromosomal abnormalities is usually based on the demonstration of clonal chromosomal aberrations (CCAs). However, CCAs are rather indicative of the relative stability of the karyotype, whereas non-clonal chromosomal aberrations (NCCAs) are representative of an unstable genome.¹⁹ Sometimes, non-recurrent chromosomal aberrations are more specific for cancer evolution. Despite extensive numbers of myxoma cell line analyses, it has been difficult to find recurrent chromosomal aberrations that are myxoma-specific.¹¹-¹³,²⁰-²³ Cytogenetic analysis revealed some clonal autosomal rearrangements: (17)(q10), der(20)(q12;21), (9)(p22), +12,¹² add(1)(q32),²² and others, however, only a translocation between chromosomes 1 and 12 (12p12) sporadically happened in another case.¹³ Other defects include telomeric associated rearrangements focused on chromosomes 13 and 15 or loss of the Y chromosome. Cytogenetic analysis of myxomas in patients suffering from Carney complex has shown a role for regions of chromosome 2p16, however, cytogenetic analysis cannot confirm a role for 2p16 in cases of sporadic myxoma.¹⁰ Nevertheless, a limited involvement in structural rearrangement for chromosome 17q2 has been proved in sporadic cardiac myxomas.¹¹,¹² In our study we observed an acquired clonal trisomy 21 in cardiac myxoma cells found as a single karyotype aberration. Trisomy 21 as an acquired clonal aberration has been previously reported in human neoplasms.¹⁴ Moreover, ger-

Figure 2. Cytogenetic and flow cytometry analysis of cells harvested from an atrial myxoma excised from a symptomatic, 75-years old male patient. The GTG-analysis revealed a clonal chromosomal aberration (47, XY, +21) (A), which was confirmed by Fluorescence in situ hybridization method (B). Additionally, the phenotype of myxoma cells was analyzed and large populations of hematopoietic progenitor cells – CD34⁺ (C) and endothelial-like cells – CD31⁺ (D) were observed.

Conclusion

Hematopoietic progenitor cells may play an important role in the histogenesis of cardiac myxomas and the karyotype aberrations have an impact on sporadic tumor genesis of the heart. There are no stage or cancer type specific recurrent chromosomal aberrations in sporadic cardiac myxoma. Genetic screening for sporadic (non-familial) cardiac myxomas is not recommended.

References

