Neurohypophyseal hormones and skeletal muscle: a tale of two faces


Submitted: 12 February 2020
Accepted: 18 February 2020
Published: 1 April 2020
Abstract Views: 866
PDF: 468
HTML: 13
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

The neurohypophyseal hormones vasopressin and oxytocin were invested, in recent years, with novel functions upon striated muscle, regulating its differentiation, trophism, and homeostasis. Recent studies highlight that these hormones not only target skeletal muscle but represent novel myokines. We discuss the possibility of exploiting the muscle hypertrophying activity of oxytocin to revert muscle atrophy, including cancer cachexia muscle wasting. Furthermore, the role of oxytocin in cardiac homeostasis and the possible role of cardiac atrophy as a concause of death in cachectic patients is discussed.


Nervi C, Benedetti L, Minasi A, Molinaro M, Adamo S. Arginine-Vasopressin Induces Differentiation of Skeletal Myogenic Cells and up-Regulation of Myogenin and Myf-5. Cell Growth Differ. 1995 6 (1) 81–89.

Minotti S, Scicchitano BM, Nervi C, Scarpa S, Lucarelli M, Molinaro M, Adamo S. Vasopressin and Insulin-like Growth Factors Synergistically Induce Myogenesis in Serum-Free Medium. Cell Growth Differ. 1998 9 (2) 155–163.

Breton C, Haenggeli C, Barberis C, Heitz F, Bader CR, Bernheim L, Tribollet E. Presence of Functional Oxytocin Receptors in Cultured Human Myoblasts. J. Clin. Endocrinol. Metab. 2002 87 (3) 1415–1418. https://doi.org/10.1210/jcem.87.3.8537. DOI: https://doi.org/10.1210/jcem.87.3.8537

Costa A, Rossi E, Scicchitano BM, Coletti D, Moresi V, Adamo S. Neurohypophyseal Hormones: Novel Actors of Striated Muscle Development and Homeostasis. Eur. J. Transl. Myol. 2014 24 (3) 3790. https://doi.org/10.4081/ejtm.2014.3790. DOI: https://doi.org/10.4081/ejtm.2014.3790

Barberis C, Mouillac B, Durroux T. Structural Bases of Vasopressin/Oxytocin Receptor Function. J. Endocrinol. 1998 156 (2) 223–229. https://doi.org/10.1677/joe.0.1560223. DOI: https://doi.org/10.1677/joe.0.1560223

Costa A, Toschi A, Murfuni I, Pelosi L, Sica G, Adamo S, Scicchitano B. M. Local Overexpression of V1a-Vasopressin Receptor Enhances Regeneration in Tumor Necrosis Factor-Induced Muscle Atrophy. Biomed Res. Int. 2014 2014 235426. https://doi.org/10.1155/2014/235426. DOI: https://doi.org/10.1155/2014/235426

Song Z, Albers H. E. Cross-Talk among Oxytocin and Arginine-Vasopressin Receptors: Relevance for Basic and Clinical Studies of the Brain and Periphery. Front. Neuroendocrinol. 2018 51 14–24. https://doi.org/10.1016/j.yfrne.2017.10.004. DOI: https://doi.org/10.1016/j.yfrne.2017.10.004

Berio E, Divari S, Cucuzza L. S, Biolatti B, Cannizzo F. T. 17β-Estradiol Upregulates Oxytocin and the Oxytocin Receptor in C2C12 Myotubes. PeerJ 2017 2017 (3). https://doi.org/10.7717/peerj.3124. DOI: https://doi.org/10.7717/peerj.3124

Naro F, De Arcangelis V, Sette C, Ambrosio C, Komati H, Molinaro M, Adamo S, Nemoz G. A Bimodal Modulation of the CAMP Pathway Is Involved in the Control of Myogenic Differentiation in L6 Cells. J. Biol. Chem. 2003 278 (49) 49308–49315. https://doi.org/10.1074/jbc.M306941200. DOI: https://doi.org/10.1074/jbc.M306941200

Scicchitano B. M, Spath L, Musarò A, Molinaro M, Rosenthal N, Nervi C, Adamo S. Vasopressin-Dependent Myogenic Cell Differentiation Is Mediated by Both Ca2+/Calmodulin-Dependent Kinase and Calcineurin Pathways. Mol. Biol. Cell 2005 16 (8) 3632–3641. https://doi.org/10.1091/mbc.E05-01-0055. DOI: https://doi.org/10.1091/mbc.e05-01-0055

Sorrentino S, Barbiera A, Proietti G, Sica G, Adamo S, Scicchitano B. M. Inhibition of Phosphoinositide 3-Kinase/Protein Kinase B Signaling Hampers the Vasopressin-Dependent Stimulation of Myogenic Differentiation. Int. J. Mol. Sci. 2019 20 (17). https://doi.org/10.3390/ijms20174188. DOI: https://doi.org/10.3390/ijms20174188

Elabd C, Cousin W, Upadhyayula P, Chen R. Y, Chooljian M. S, Li J, Kung S, Jiang K. P, Conboy I. M. Oxytocin Is an Age-Specific Circulating Hormone That Is Necessary for Muscle Maintenance and Regeneration. Nat. Commun. 2014 5 4082. https://doi.org/10.1038/ncomms5082. DOI: https://doi.org/10.1038/ncomms5082

de Jager N, Hudson N. J, Reverter A, Wang Y. H, Nagaraju S. H, Cafe L. M, Greenwood P. L, Barnard R. T, Kongsuwan K. P, Dalrymple B. P. Chronic Exposure to Anabolic Steroids Induces the Muscle Expression of Oxytocin and a More than Fifty Fold Increase in Circulating Oxytocin in Cattle. Physiol. Genomics 2011 43 (9) 467–478. https://doi.org/10.1152/physiolgenomics.00226.2010. DOI: https://doi.org/10.1152/physiolgenomics.00226.2010

Adamo S, Pigna E, Lugarà R, Moresi V, Coletti D, Bouché M. Skeletal Muscle: A Significant Novel Neurohypophyseal Hormone-Secreting Organ. Front. Physiol. 2019 9. https://doi.org/10.3389/fphys.2018.01885. DOI: https://doi.org/10.3389/fphys.2018.01885

Pigna E, Berardi E, Aulino P, Rizzuto E, Zampieri S, Carraro U, Kern H, Merigliano S, Gruppo M, Mericskay M, et al. Aerobic Exercise and Pharmacological Treatments Counteract Cachexia by Modulating Autophagy in Colon Cancer. Sci. Rep. 2016 6. https://doi.org/10.1038/srep26991. DOI: https://doi.org/10.1038/srep26991

Moresi V, Pristerà A, Scicchitano B. M, Molinaro M, Teodori L, Sassoon D, Adamo S, Coletti D. Tumor Necrosis Factor-α Inhibition of Skeletal Muscle Regeneration Is Mediated by a Caspase-Dependent Stem Cell Response. Stem Cells 2008 26 (4) 997–1008. https://doi.org/10.1634/stemcells.2007-0493. DOI: https://doi.org/10.1634/stemcells.2007-0493

Jankowski M, Hajjar F, Al Kawas S, Mukaddam-Daher S, Hoffman G, Mccann S. M, Gutkowska J. Rat Heart: A Site of Oxytocin Production and Action. Proc. Natl. Acad. Sci. U. S. A. 1998 95 (24) 14558–14563. https://doi.org/10.1073/pnas.95.24.14558. DOI: https://doi.org/10.1073/pnas.95.24.14558

Paquin J, Danalache B. A, Jankowski M, McCann S. M, Gutkowska J. Oxytocin Induces Differentiation of P19 Embryonic Stem Cells to Cardiomyocytes. Proc. Natl. Acad. Sci. U.S.A. 2002 99 (14) 9550–9555. https://doi.org/10.1073/pnas.152302499. DOI: https://doi.org/10.1073/pnas.152302499

Florian M, Jankowski M, Gutkowska J. Oxytocin Increases Glucose Uptake in Neonatal Rat Cardiomyocytes. Endocrinology 2010 151 (2) 482–491. https://doi.org/10.1210/en.2009-0624. DOI: https://doi.org/10.1210/en.2009-0624

Jung C, Wernly B, Bjursell M, Wiseman J, Admyre T, Wikström J, Palmér M, Seeliger F, Lichtenauer M, Franz M, et al. Cardiac-Specific Overexpression of Oxytocin Receptor Leads to Cardiomyopathy in Mice. J. Card. Fail. 2018 24 (7) 470–478. https://doi.org/10.1016/j.cardfail.2018.05.004. DOI: https://doi.org/10.1016/j.cardfail.2018.05.004

Supporting Agencies

Sapienza University

Benoni, A., Renzini, A., Cavioli, G., & Adamo, S. (2020). Neurohypophyseal hormones and skeletal muscle: a tale of two faces. European Journal of Translational Myology, 30(1), 53–57. https://doi.org/10.4081/ejtm.2019.8899

Downloads

Download data is not yet available.

Citations