ORIGINAL PAPER

Comparison of conventional dressings and vacuum-assisted closure in the wound therapy of Fournier’s gangrene

Fatih Yanaral 1, Can Balci 2, Faruk Ozgor 1, Abdulmuttalip Simsek 3, Ozkan Onuk 2, Muammer Aydin 2, Baris Nuhoglu 2

1 Department of Urology, Haselsi Teaching and Research Hospital, Istanbul, Turkey;
2 Department of Urology, GaziosmanpasaTaksim Teaching and Research Hospital, Istanbul, Turkey;
3 Department of Urology, Bakirkoy Dr. SadiKonuk Teaching and Research Hospital, Istanbul, Turkey.

Summary Objective: The purpose of our study was to compare Vacuum-assisted closure (VAC) and conventional dressings in the wound therapy of Fournier’s gangrene (FG).
Materials and methods: The study evaluated 54 patients, retrospectively. Following initial removal of necrotic and devitalized tissue, in Group I patients the wounds were covered with conventional antisepctic dressings and patients continued to be treated with conventional dressings. In Group II patients VAC therapy was initiated. The collected data were compared between groups.
Results: The difference between two groups were statistically significant in terms of number of daily dressing (group I: 2, group II: 0.5), VAS (group I: 8, group II: 5), number of daily analgesics (group I: 8, group II: 0), number of daily narcotic analgesics (group I: 1, group II: 0), duration of mobilization per day (group I: 40, group II: 73 minutes) (p < 0.05).
Conclusions: Our study does not determine that a VAC therapy is better than conventional dressings in terms of clinical outcome. However, vacuum dressing appears an effective and successful method, which offers fewer dressing changes, less pain, and greater mobility comparing to conventional dressings in the management of FG patients.

KEY WORDS: Debridement; Gangrene; Prognosis; Treatment outcome; Wound closure techniques.

Submitted 26 April 2017; Accepted 2 June 2017

INTRODUCTION

In 1883, Jean Alfred Fournier described a syndrome with necrosis of the perineum in five men; this type of necrotizing fasciitis was subsequently given his name and is known as Fournier’s gangrene (FG) (1). FG is a potentially life-threatening progressive infection necrotizing fasciitis of the perineal, genital, or perianal regions. It is characterized by thrombosis of the nutrient vessels leading to tissue ischemia and tissue ischemia promotes infectious dissemination leading to skin necrosis. In most cases, FG is a polymicrobial infection, with both aerobic and anaerobic organisms, which originate from a urogenital, colorectal, or cutaneous source (2).

In spite of aggressive management, it is associated with high morbidity and mortality (3-67%) and a delay in diagnosis and treatment is known to increase mortality rates (3). Classical treatment consists of radical excision of all necrotic tissue, broad-spectrum antibiotics and intensive care. Usually repeated debridement is necessary. For this reason wounds of the patients remain open for a long time, and require frequent dressing. Different protocols have been proposed for postoperative open wound care: unprocessed honey, hyperbaric oxygenation, grown hormones, growing agents, and vacuum-dressing technologies (4). Vacuum-assisted closure (VAC) device (KCI USA, Inc. San Antonio, TX USA) is a wound care system that works on the basis of negative pressure vacuuming; removes exudate and infectious materials, reduces edema and promotes healing. The purpose of our study was to compare VAC and conventional dressings in the wound therapy of FG.

MATERIALS AND METHODS

The study evaluated 54 patients who diagnosed of FG and received treatment between June 2001 and October 2014 at our Urology Department. All data and parameters were analyzed retrospectively. FG was diagnosed by evidence of a necrotizing fasciitis in the scrotal or perineal region. Patients with a simple inflammation without involvement of the fascia, necrotizing fasciitis at other locations and patients with incomplete clinical data were excluded from the analysis.

Intravenous replacement of fluid and electrolytes, thirddgeneration cephalosporin and metronidazole antibiotic therapy were started at admission. All patients underwent surgical debridement during admission day (Figure 1). Empiric antimicrobial therapy was revised according to the results of bacterial culture and drug-sensitive tests of the removed tissue samples.

Following initial removal of necrotic and devitalized tissue, in Group I patients the wounds were covered with conventional antisepctic dressings and patients continued to be treated with conventional dressings by washing repeatedly with saline until healthy granulation tissue was formed in the wound. Wound dressings were changed twice a day. After surgical debridement, in Group II patients VAC therapy was initiated. Silver nitrate sponge was used for the wounds then drape was placed over the

No conflict of interest declared.
sponge, suction was inserted and continuous negative pressure was applied to the wounds (Figure 2). Initially, the pressure was set to 50 mm Hg and increased to a maximum of 125 mm Hg. VAC dressings were changed every 48-72 hours. Additional changes were performed in both groups if the dressings became wet due to blood or fluid from the wounds. In the case of progressive necrosis, surgical debridement was repeated. After the wounds were clinically healed, in small residual defects, tertiary wound closure was performed; otherwise, skin flap or graft surgery was performed (Figure 3).

We collected data on patient age, gender, history of diabetes mellitus, origin, wound diameter, duration of operation, use of VAC, the number of daily dressings, visual analogue scale for pain (VAS), need for analgesics, the duration of mobilization per day, number of surgical debridement, time from initial surgical debridement to wound closure, wound closure technique, length of hospital stay (LOS), number of deaths.

The Independent-Samples t-test, the Mann-Whitney U test, chi-square test and Fisher's exact test were used for statistical analysis. Results were considered statistically significant if the P value was less than 0.05.

RESULTS

All the 54 patients were male, with a mean age of 55.8 ± 14.9 in conventional dressings group and 61.6 ± 7.6 in VAC group (p > 0.05). Group I consisted of thirty-one patients and group II consisted of twenty-three patients. The two groups were similar in the distribution of history of diabetes mellitus (Group I: 41.9%, Group II: 60.9%), wound diameter (Group I: 17, Group II: 15 cm), duration of operation (Group I: 55, Group II: 48 minutes), number of surgical debridement (Group I: 1, Group II: 2), and length of hospital stay (Group I: 14, Group II: 17 days) (p > 0.05). The origin of FG was anorectal diseases in 13 patients in Group I (41.9%) and 10 patients in Group II (43.5%). The other origin was urogenital diseases in 18 patients in Group I (58.1%) and 13 patients in Group II (56.5%), time from initial surgical debridement to wound closure (Group I: 12 (7-25), Group II: 13 (11-21) days) (p > 0.05) (Table 1).

However, the difference between two groups was statistically significant in terms of number of daily dressing (Group I: 2, Group II: 0.5), VAS (Group I: 8, Group II: 5), number of daily analgesics (Group I: 4, Group II: 2),
Table 1. Preoperative characteristics of patients.

<table>
<thead>
<tr>
<th></th>
<th>Conventional dressings</th>
<th>VAC group</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age, years</td>
<td>55.6 ± 14.9</td>
<td>61.6 ± 7.6</td>
<td>< 0.05</td>
</tr>
<tr>
<td>DM</td>
<td>13 (41.9%)</td>
<td>10 (40.9%)</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Origin (anorectal/urogenital)</td>
<td>13/18</td>
<td>10/13</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Median wound diameter, cm</td>
<td>17 (10.45)</td>
<td>15 (9.44)</td>
<td>< 0.05</td>
</tr>
<tr>
<td>DM = Diabetes mellitus.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Clinical characteristics of patients.

<table>
<thead>
<tr>
<th></th>
<th>Conventional dressings</th>
<th>VAC group</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of operation, minutes</td>
<td>55 (30-110)</td>
<td>48 (30-98)</td>
<td>< 0.05</td>
</tr>
<tr>
<td>No. of daily dressing</td>
<td>2 (2.3)</td>
<td>0.5 (0.51)</td>
<td>< 0.05</td>
</tr>
<tr>
<td>VAS</td>
<td>8 (4.10)</td>
<td>5 (4.10)</td>
<td>< 0.05</td>
</tr>
<tr>
<td>No. of daily analgesics</td>
<td>4 (3.5)</td>
<td>2 (2.3)</td>
<td>< 0.05</td>
</tr>
<tr>
<td>No. of daily narcotic analgesics</td>
<td>1 (0.2)</td>
<td>0 (0.1)</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Duration of mobilization per day, minutes</td>
<td>40 (0-70)</td>
<td>73 (30-120)</td>
<td>< 0.05</td>
</tr>
<tr>
<td>No. of surgical debridement</td>
<td>1 (1.3)</td>
<td>2 (1.3)</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Time from initial surgical debridement to wound closure, day</td>
<td>12 (7.25)</td>
<td>13 (11.21)</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Wound closure technique (tissue/flap or graft)</td>
<td>19/10</td>
<td>11/10</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Length of hospital stay, days</td>
<td>14 (3.32)</td>
<td>17 (4.32)</td>
<td>< 0.05</td>
</tr>
<tr>
<td>No. of deaths</td>
<td>2 (8.5%)</td>
<td>2 (8.7%)</td>
<td>< 0.05</td>
</tr>
<tr>
<td>VAS = Visual analogue scale for pain.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other causes include a possible urethral stricture and a trauma from an indwelling Foley catheter (7). Previous studies from general surgery departments reporting perianal abscess as the most common etiological factor (8). As a urology department we found that the most common origin of FG was urogenital diseases (57.4%). The two groups were similar in origin of disease (p = 1). Timing and the extent of the first debridement are the most important risk factors in terms of increased mortality rate. The relative risk of death was 7.5 times greater in cases of restricted primary debridement (9). Surgical removal of necrotic tissue caused halting the progress of the infection and eliminating the systemic effects of necrotic material, toxins, and bacteria (10).

After initial surgical debridement, management of the wound is important, along with proper nutrition of the patient. In most cases, wounds are managed with conventional dressings that contain a wide variety of active agents such as saline, povidone iodine, potassium permanganate, Dakin’s solution, enzymatic agents for wound cleansing, or polyhexamidine.

The other proposed protocols are unprocessed honey, hyperbaric oxygenation, grown hormones, growing agents, and vacuum-dressing technologies (11).

FG is an uncommon but life-threatening condition. Males are reported to be ten times more likely than females to develop the disease. The predisposing factors include diabetes mellitus, alcohol abuse, immunodeficiency, malignant neoplasms, and liver and renal diseases. Multiple predisposing factors represent a poor prognosis and high mortality (5). The most frequent co-morbidity in patients with necrotizing fasciitis is diabetes mellitus (10-60%). In the literature the incidence is highest in the sixth decade of life and patient age in our study groups was similar to that reported (6).

FG maybe the result of surgical wounds, skin abscess drainage, and pressure sores. It can also present as a complication of colorectal disease due to anorectal infection, ischiorectal abscesses, and colon perforations.
rather than local tissue defects. In the present study, there was no significant difference between the groups in mortality rate (p = 1). Fifty of the 54 patients survived and the mortality rate of all patients was 7%. The deaths of these four patients were at 6, 4, 2 and 8 days. This is compatible with mortality from FG increase within the acute sepsis phase (14).

Conclusions

Our study does not determine that a VAC therapy is better than conventional dressings in terms of clinical outcome. However, vacuum dressing appears an effective and successful method, which offers fewer dressing changes, less pain, and greater mobility compared to conventional dressings in the management of FG patients. The present study’s outcomes should be supported by further prospective studies with a larger patient volume.

References