
INTRODUCTION

Inhomogeneous vertical and horizontal distribution is
a well know characteristic of phytoplankton populations
(George and Edwards, 1976; George and Heaney, 1978;
George, 1981; Salonen et al., 1999; Klausmeier and Litch-
man, 2001; Oliver and Ganf, 2002; Clegg et al., 2007;
Hamilton et al., 2010). The formation of patches, thick-
ening at selected water layers and blooms is driven by in-
teractions between physical and biological processes
(Fietz et al., 2005; Hillmer et al., 2008). Some species can
change their position in the water column by actively
swimming like flagellates (Clegg et al., 2007; Simmonds
et al., 2015), or by regulating their buoyancy, like
cyanobacteria (Walsby et al., 2004). Their distribution is
conditioned by a large number of driving factors, which
include the allocation of resources (Klausmeier and Litch-
man, 2001), the temperature gradients (Clegg et al., 2003,
2007), the light (photo response) (Rhiel et al., 1988), and
the chemical gradients (Clegg et al., 2004). Vertical mi-
grations finalized at finding optimal conditions for pho-
tosynthesis are often observed in Dinoflagellates, such as
Ceratium hirudinella (O.F. Müller) Dujardin (Alexander
and Imberger, 2009; Whittington et al., 2000; Whitton and
Potts, 2000) and Peridinium cinctum (O.F. Müller) Ehren-

berg (Regel et al., 2004). Cyanobacteria are able to regu-
late buoyancy through the biosynthesis of specialized gas
vesicles, which enable populations to actively move to
water depths with optimal growth conditions. Vertical
movement rates in cyanobacteria range from a few cen-
timetres per hour to a few meters per hour (Salmaso et al.,
2014b). As expected, the highest speeds (between 0.5 and
2 m h–1) are reached by the large colonies of Microcystis
and the filamentous aggregates of Dolichospermum and
Aphanizomenon. Other data quoted in Paerl (1988) report
speeds of up to 10 m h–1, whereas Oliver et al. (2012) in-
dicated maximum velocities achieved by large aggregates
of Dolichospermum circinalis (Rabenhorst ex Bornet &
Flahault) P. Wacklin, L. Hoffmann & J. Komárek of more
than 200 m h–1. The speeds achieved by individual thin
filaments of cyanobacteria are much lower and limited;
in the case of Planktothrix rubescens (DeCandolle ex
Gomont) Anagnostidis & Komárek, to a few centimetres
per hour, typically 3-5 cm h–1, though higher speeds can
be reached by the aggregation of filaments in larger units
(Walsby et al., 2006).

P. rubescens is a typical cyanobacterium that is com-
monly found in deep oligo-mesotrophic waterbodies. The
formation of layers of variable thickness in the metalim-
netic zone is a peculiar characteristic of this species. This
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ABSTRACT
Among cyanobacteria, Planktothrix rubescens (De Candolle ex Gomont) Anagnostidis & Komárek is a species that is well adapted

to develop in moderately nutrient rich and deep lakes. In this typology of waterbodies, the competitive abilities of this species rely in
its capacity to stand and growth in the dimly illuminated metalimnetic layer during the warmer months. In this work, we have studied
the seasonal development and distribution of this species in Lake Ledro, a meso-oligotrophic reservoir located in the Eastern Alps.
During the last decade, this species has given rise to numerous and extended surface bloom episodes, causing the reddening of vast
areas of the lake. In summer, the light intensities in the zone of greater development of this cyanobacterium (the metalimnion, between
the euphotic depth and the layer of maximum development of the species) were between 2 and 20 µmol m–2 s–1, i.e. values that were
well within the light intensities required to sustain the optimal growth of filaments. The formation of the autumn and winter blooms
was triggered by the cooling of surface waters and the deepening of the mixed layer, which, eroding the metalimnion, entrained the fil-
aments of P. rubescens in the surface mixed layers. The formation of the surface blooms was associated with the presence of high
amounts of microcystins, which in a few occasions reached concentrations between 10 and 22 µg L–1, posing potential problems for the
exploitation of water resources.
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behaviour is regulated by the vertical light field and the
tight coupling between carbohydrate accumulation and
gas vesicle buoyancy (Walsby et al., 2004). P. rubescens
gas vesicles of different strains are characterised by dif-
ferent strength to hydrostatic pressure in function of lake
morphometry and depth (D’Alelio et al., 2011). This
species is adapted to grow at low light irradiance (up to
~1 µmol m–2 s–1) and this characteristic is advantageous
not only in summer (filaments located in the metalimnetic
layers), but also for populations developing in autumn or
dragged down at greater depths during winter mixing
(Walsby and Schanz, 2002). The tolerance to low light
conditions is due to the presence of phycobiliproteins like
phycocyanin and phycoerythrin, which are antenna pig-
ments able to capture the whole spectrum (400-700 nm)
of the Photosynthetic Active Radiation (PAR), providing
a strong competitive advantage over other algae (Bright
and Walsby, 2000; Oberhaus et al., 2007). Furthermore,
when inorganic phosphorus is depleted, P. rubescens is
able to use dissolved organic phosphorus by excretion of
alkaline phosphatase (Feuillade et al., 1990).

Similarly to other toxic cyanobacteria, P. rubescens pro-
duces several microcystin (MC) congeners, most of them
highly toxic for animals and humans (Meriluoto et al.,
2017; Metcalf and Codd, 2012). The formation of
cyanobacterial blooms in waters used for drinking purposes
has been associated to the occurrence of human cancer in a
number of countries (Fleming et al., 2002; Svircev et al.,
2009; Ueno et al., 1996; Zhou et al., 2002). Therefore, the
occurrence of toxic algal blooms in reservoirs used for
drinking water production and bathing activities is of crit-
ical importance for human health (Bogialli et al., 2013;
Hitzfeld et al., 2000; Hoeger et al., 2005). When lake water
is derived from metalimnetic layers, particular attention
must be devoted to the potential risk of contamination
(Leboulanger et al., 2002; Cuypers et al., 2011). MC pro-
duce adverse effects also on zooplankton and fish (Shams
et al., 2014; Sotton et al., 2014; Sukenik et al., 2015).

The methods used for the determination of phyto-
plankton based on the collection of discrete samples in
the euphotic zone lack the necessary resolution to obtain
accurate knowledge of the species distribution (Beutler et
al., 2002). Determination of the fine vertical distribution
of an organism with standard discrete sampling methods
is difficult if not unfeasible, in particular when popula-
tions are concentrated in thin metalimnetic layers. Con-
versely, submersible devices measuring in continuous
mode and real-time can accurately identify even the tiniest
changes of biomass along the water column (Gregor et
al., 2005; Humbert and Törökné, 2017). A widely used
approach is based on the detection of the fluorometric sig-
nal produced by the phytoplankton photosynthetic pig-
ments (Salmaso et al., 2017). Based on this approach, the
use of the fluorometric probe has allowed the description

of the spatial heterogeneity of phytoplankton along the
water column (Alexander and Imberger, 2009; Longhi and
Beisner, 2009; Moreno-Ostos et al., 2006; Selmeczy et
al., 2016; Serra et al., 2007) and along horizontal gradi-
ents (Carraro et al., 2012; Moreno-Ostos et al., 2009;
Salcher et al., 2011). The use of these probes is particu-
larly useful to catch short-term variations in the vertical
distribution of metalimnetic species like P. rubescens due
to displacement caused by seiches. These transient
changes are poorly described because of their rapid and
occasional nature that are difficult to detect with the tra-
ditional sampling methodologies (Garneau et al., 2013).

Compared to the large and deep lakes, knowledge of
accurate distribution of P. rubescens in reservoirs is less
known. In this typology of waterbodies, the relationships
between the vertical distribution of P. rubescens, the ther-
mal structure and the light regime have been poorly in-
vestigated. With the aim to fill this gap, we performed an
investigation on Lake Ledro, which is a meso-olig-
otrophic reservoir that has attracted the interest of scien-
tists for paleolimnological and hydrodynamic
investigations (Joannin et al., 2013; Magny et al., 2009;
Milan et al., 2016; Santo et al., 2017; Simonneau et al.,
2013; Vanniere et al., 2013) and that is characterized by
periodic P. rubescens blooms (Salmaso et al., 2013). The
main objective of this study is to describe the vertical dis-
tribution of P. rubescens based on high resolution profil-
ing and to interpret the distribution patterns as a function
of the main environmental drivers. A second objective is
to evaluate the toxigenic potential of the species, in rela-
tion to the seasonality of its biomass and toxin production,
as well as the main use of the lake.

METHODS

Study site

Lake Ledro is located south of the Italian Alps, 6 km
north of Lake Garda, at 650 m asl. The catchment area
covers ca. 131 km2. The lake is feed by two tributaries,
the Massangla and the Pur rivers that are often dry. The
largest amount of water originates from sub-lacustrine in-
lets. The outlet is the Ponale River, draining into Lake
Garda at 65 m asl. Since 1928 the level of Lake Ledro is
regulated for hydroelectric exploitation, with seasonal
water level fluctuations of several meters. The lake is con-
nected by a penstock to a pumped-storage plant on the
shores of Lake Garda, from which water may be again
pumped to Lake Ledro. The lake is extended in the NW-
SE axis, and delimited by steep slopes surrounding a rel-
atively wide and flat central basin. Prevailing winds, in
particular in the summer season, blow from SE in the
morning and from NW in the afternoon (Fig. 1).

Between the beginning of the 1970’s and the end of the
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210 Planktothrix rubescens in a small reservoir

1990’s, Lake Ledro underwent a phase of eutrophication
due to wastewater discharges, massive use of phosphate de-
tergents and livestock. Water quality programs aimed at im-
proving waste water treatment plants and reduction of
nutrient loading into the lake begun in the 1980s.

Sampling, laboratory analyses and field measurements
Sampling and field measurements were carried out

monthly in the deepest zone of the lake from June 2011
to May 2012.

At the time of sampling, profile measurements of
temperature, pH, dissolved oxygen and conductivity were
made using a multiprobe CTD, Idronaut Ocean seven
316. Light (PAR) intensity was measured with a sub-
mersible irradiance sensor (LiCor 192SA). The euphotic
depth (zeu) was defined as the depth at which the PAR ir-
radiance drops to 1% of its sub-surface value, i.e. zeu =
ln(100) kd

–1, where kd is the vertical light attenuation co-
efficient (m–1) (Kirk, 2011).

Phytoplankton biomass, expressed in µg L–1 of chloro-
phyll-a (Chl-a), was measured at each sampling date by
the submersible fluorometric probe FluoroProbe II (bbe-
Moldaenke, Kiel, Germany) (Kring et al., 2014). The de-
vice is based on the measurement of chlorophyll
fluorescence emission after being excited at five different
wavelengths (450, 525, 570, 590, and 610 nm) employing
pulsed light-emitting diodes for the excitation of pigments
present in the phytoplankton. The FluoroProbe II device
allows the discrimination of four algal groups including
‘green’ algae (Chlorophyta and Euglenophyta), ‘blue’

algae containing phycocyanin (Cyanophyta), ‘brown’
algae (Bacillariophyta, Chrysophyta and Dinophyta), and
‘red’ algae containing phycoerythrin (Cryptophyta, Plank-
tothrix). To discriminate Cryptophyta and P. rubescens
signals, an additional fingerprint must be specifically as-
signed to the red, phycoerythrin containing P. rubescens
(Leboulanger et al., 2002). To do this, a strain of P.
rubescens, isolated from Lake Ledro was used to calibrate
the probe, which was first immersed in GF/F pre-filtered
lake water to obtain a natural lake blank, and then in lake
water dominated by P. rubescens with known Chl-a con-
centration. After calibration, we noted a very good corre-
lation of the measured fluorescence with Chl-a (Beutler
et al., 2002). Moreover, the fluorometer records were
checked against cell counting of discrete field samples. In
particular, the differences between the slopes obtained by
the regressions between the biovolumes of Planktothrix
and the abundances obtained by the FluoroProbe at dif-
ferent depths were tested by computing ANCOVA statis-
tics (Crawley, 2005).

The fine vertical and horizontal distribution of P.
rubescens by high resolution spectrofluorometric profiles
was further analyzed in one additional one-day sampling
campaign carried out on 26 September 2011. The hori-
zontal distribution was determined by 5 vertical spectro-
fluorometric profiles along a longitudinal transect in the
main axis of the lake. Due to the small size of the lake,
the time required to complete a whole horizontal survey
was very short, and the collected data could be considered
representative of the horizontal gradient.

Fig. 1. Location of Lake Ledro and bathymetric map indicating the position of the sampling station (red star). The wind rose shows the
wind direction and velocity (m s–1) in August 2012.
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Water samples for the chemical analyses were col-
lected using a 5 litres Niskin bottle at 0, 5, 10, 15, 20, 25,
30, 35, 40 m and at 1 m from the bottom. In laboratory,
total phosphorus (TP) and nitrate nitrogen (NO3-N) were
measured following standard methods (APHA, 2010).

Phytoplankton samples were collected at 1, 5, 10, 15
and 20 m; after fixation in Lugol’s solution, subsamples
of 10 mL were analyzed using inverted microscope. Bio-
volumes were calculated from abundances and specific
biovolumes approximated to simple geometric shapes
(Rott et al., 2007). In November 2011, during the onset
of the bloom, two additional samples were collected.

Samples for the determination of algal toxins were
collected at the surface, 10 and 20 m depth between June
2010 and October 2012; a few other occasional samples
were collected at 5 and 15 m. The concentration of MC
and anatoxin-a (ATX) were determined by UHPLC-
MS/MS (Waters Acquity LC coupled to AB Sciex 4000
QTRAP mass spectrometer). Toxin extraction from algal
biomass was performed after filtration of the water sam-
ples on GF/C filters. The analytical procedures were de-
scribed in detail in Cerasino et al., (2016) and Cerasino
and Salmaso (2012).

RESULTS

Water temperature and nutrients

Since March/April, water temperature slowly in-
creased from 5°C rising to the maxima of 23.5°C in Au-
gust. The lake showed a stable thermal stratification from
April to November, with a stable metalimnion developing
between 8 and 20-25 m. Full mixing occurred in winter,
with water temperatures reaching 5°C in early January
2011 (Fig. 2A).

During the summer months, epilimnetic and metalim-
netic TP concentrations were around 2-11 µg L–1 and 9-
35 µg L–1, respectively (Fig. 2B), whereas corresponding
concentrations of NO3-N were around 0.65-0.72 mg L–1

and 0.52-0.72 mg L–1, respectively. During the winter full
mixing, TP and NO3-N average concentrations were 15
µg L–1 and 0.74 mg L–1, respectively. Overall, the annual
(2012) average values (±SD) of TP and NO3-N in the epil-
imnetic layer (0-20 m) were 14±6.4 µg L–1 and 0.83±0.16
mg L–1, respectively.

Transparency and Chl-a

Water transparency showed lower values between No-
vember and April (2.3-5.8 m). The highest transparencies
of the lake were detected between May and October (5.6-
11.3 m). The annual (2012) average value (±SD) of trans-
parency was 6.7±2.3 m.

Excluding a peak detected on October 2012 (18.7 µg
L–1), between 0 and 10 m, Chl-a concentrations were be-

tween 1 and 11 µg L–1. In the layer 15-20 m, concentra-
tions were much higher, ranging between 1.5 and 34 µg
L–1. The annual (2012) average value (±SD) of Chl-a was
6.6±6.6 µg L–1.

Phytoplankton groups

Cyanobacteria were the main phytoplankton group de-
veloping in Lake Ledro (Fig. 3). Excluding the first sam-
pling date, their contribution varied between 30% and
93% of the total determined fraction. The main species
within this group was represented by P. rubescens, whose
fraction represented between 98% and 100% on the total
cyanobacteria biovolume. The other abundant groups
were represented by Bacillariophyta (1-65%; mostly
Fragilaria crotonensis Kitton, Asterionella formosa Has-
sal, Cyclotella spp., Diatoma elongata (Lyngbye) C.
Agardh and Fragilaria spp.) and Chrysophyta (<1-40%;
mostly Dinobryon spp. and Mallomonas spp.).

The biovolumes of P. rubescens estimated by the mi-
croscopic countings were closely correlated with the
abundances estimated by the FluoroProbe. Excluding two
outliers detected in June (15 m) and October 2012 (10 m),
the relationships between these two estimates were always
highly significant (Tab. 1). The slope of the relationship
between the two variables was slightly higher at the sur-
face (0-2 m) compared to the deeper layers, particularly
at 20 m (ANCOVA, P<0.01), indicating a greater fluoro-
metric response of P. rubescens in the layer around the
metalimnion.

Time and depth distribution of P. rubescens

In the whole study period, the temporal development of
P. rubescens as estimated by the FluoroProbe showed a
clear seasonal pattern (Fig. 2C), which was confirmed, in
the first 20 m, by the biovolume estimates obtained by mi-
croscopic countings (Fig. 2D). During the maximum ther-
mal stratification (June-October) P. rubescens was always
located in the metalimnetic layer, at the highest density gra-
dient, with maximum biovolumes ranging between 7000
mm3 m–3 in 2011 and 10700 mm3 m–3 in 2012. High oxygen
saturation was measured immediately above the peak of P.
rubescens with values up to 190% (Figure not shown).

In October, with the decreasing of air temperature,
epilimnetic water body cooled and progressively mixed
down to the depth of the P. rubescens layer, causing the
entrainment of filaments in the mixolimnion. Eventually,
with the lake fully mixed, the filaments were homoge-
neously distributed down to the lake bottom (Fig. 2C). In
spring, at the onset of thermal stratification, a small sub-
surface maximum in the P. rubescens populations began
to develop. During the maximum thermal stratification
(June-October), the euphotic depth ranged between 10
and 19 m and the maximum P. rubescens density (peakmax)
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212 Planktothrix rubescens in a small reservoir

Fig. 2. Temporal development of (A) water temperature (°C); (B) total phosphorus (µg L–1); (C) biomass of P. rubescens as determined
by the FluoroProbe (Chl-a eq, µg L–1); and (D) biomass of P. rubescens estimated by microscopic countings (mm3 m–3) between the
surface and 20 m in Lake Ledro. In (C) the black and green continuous lines indicate the mixing layer and the euphotic depths, respec-
tively. Data refer to the period between June 2011 and December 2012.
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varied between 12 and 19 m (Fig. 2C). The maximum de-
velopment of P. rubescens was located at about 1.5 m
below the depth of the euphotic zone. Moreover, 1% of
the subsurface light intensity (zeu) ranged between 6 and
20 µmol m–2 s–1; and light intensities at the depth of the
maximum peak of Planktothrix ranged between 2 and 11
µmol m–2 s–1(average 6±2.7 µmol m–2 s–1). Overall, in the
stratification period (April-November), the depths corre-
sponding to the maximum densities of P. rubescens were
strongly and positively correlated with the variations in
the euphotic depth values (r2= 0.94; P<0.001) (Fig. 4).

The abundances of Planktothrix obtained by the Flu-
oroProbe (expressed as µg Chl-a eq L–1) were integrated
from the water surface to 40-meter depth to calculate the
mean total biomass of P. rubescens per surface unit (m2)
(Fig. 5). Values increased from 0.03 g Chl-a eq m–2 in
June 2011 to over 0.13 g Chl-a eq m–2 in September 2011;
values fluctuated between 0.05 and 0.13 g Chl-a eq m–2

in the following months.
The one-day survey carried out on September 2011

along the main axis of the lake allowed the identification
of consistent variations in the vertical distributions of the
P. rubescens biomass persisting along the major axis of
the lake. The depths of the P. rubescens peaks were a little
bit shallower in the NW zone of the lake compared to the
SE zone, with a difference of up to 4 m between the two
extremities (Fig. 6). Heterogeneity was documented not
only in the vertical distribution of P. rubescens, but also
in the horizontal, with lower biomasses at the NW end of
the lake and higher biomasses at the SE end (Fig. 6).

During the investigation, P. rubescens occasionally
formed extended surface blooms, which were particularly
apparent along the shores, as in the episode occurred be-
tween the end of October and the beginning of November
2011 (Fig. 7A). This bloom was strictly localized at the
surface and thicket along the shores and bays, and there-
fore no relevant signals were recorded by the FluoroProbe
(Fig. 2C). In other occasions, however, occurred before
and after the activities carried out in this research, surface
blooms were particularly apparent and extended, as in the
events of autumn 2009, spring 2010, and December 2013
(Fig. 7B, and Wilmotte et al., 2017: Fig. 4.1 C,D).

Total MC concentrations varied between 1 ng L–1 and
4.4 µg L–1 (August 2011, 20 m). Generally, the highest con-
centrations (>0.2 µg L–1) were detected at 20 m, i.e. the
maximum depth at which sampling for cyanotoxins analy-
sis was performed; during maximum stratification, between
July and September, MC concentrations at 20 m were al-
ways higher than 1 µg L–1. Overall, the mean concentra-
tions at 20 m were significantly higher (1.3 µg L–1) than
those measured at the surface (0.35 µg L–1) and 10 m depth
(0.52 µg L–1) (ANOVA and Tukey’s test, P<0.001) (Fig. 8).
The more abundant MC congeners were represented by
MC-RRdm and MC-LRdm. Other minor MC congeners

Fig. 3. Temporal development of the dominant phytoplankton
phyla between June 2011 and December 2012.

Fig. 4. Relationship between the depth of P. rubescens maxi-
mum densities (peakmax) and the euphotic depth (zeu); peakmax =
1.35 + 1.02×zeu, r2 = 0.94, P<0.001. The shaded area indicates
the 95% confidence levels.

Tab. 1. Regression between the biovolume values of P.
rubescens estimated by microscopic countings (mm3

L–1) and abundances estimated by the FluoroProbe (equivalents
of Chl-a µg L–1). The parameters a (intercept) and b (slope) were
obtained from the regression y = a + b × x, where y is the bio-
volumes and x the abundances estimated by the FluoroProbe.

                                 a                   b                  r2                  P

0-2 m                      0.14              0.56              0.79            <0.001
5 m                         0.15              0.34              0.79            <0.001
10 m                      -0.02              0.36              0.88            <0.001
15 m                      -0.15              0.42              0.83            <0.001

20 m                       0.37              0.27              0.86            <0.001
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214 Planktothrix rubescens in a small reservoir

were MC-HtyrRdm, and MC-RR and MC-LR. Conversely,
the neurotoxic alkaloid ATX was always detected with very
low concentrations (<0.05 µg L–1). Overall, the total MC
concentrations showed a strong relationship with the bio-
volumes of P. rubescens (Fig. 9).

During the blooms, the concentrations of MC at the
surface reached quite high values. In a few samples col-
lected at the surface during one of these events (3 Novem-
ber 2011), the total concentrations of MC were between
8.4 and 10.0 µg L–1. An occasional and isolated high value
was recorded also at the very surface in March 2012

(9 µg L–1). Before this investigation, total MC concentra-
tion measured on a surface sample collected during a
bloom on 3 March 2010 was 21.8 µg L–1. In both cases,
the dominant congeners were MC-RRdm and MC-LRdm.

DISCUSSION

Ecological and trophic characterization

Populations of P. rubescens have been widely studied
all over Europe. Traditionally, the first and more numer-

Fig. 5. Integrals of the P. rubescens biovolume (g Chl-a eq m–2) in Lake Ledro computed from the surface to 40 m depth.

Fig. 6. Two dimensional transects of the distribution of P. rubescens biomass obtained by the FluoroProbe as Chl-a eq (µg L–1) along
the main axis of the lake carried out on 26 September 2011.
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ous studies were carried out in the subalpine and peri-
alpine regions (Jacquet et al., 2005; Legnani et al., 2005;
Kurmayer and Gumpenberger, 2006; Salmaso et al., 2006;
Walsby et al., 2006), Central (Salmaso and Padisák, 2007)
and Northern Europe (Halstvedt et al., 2007). For this rea-
son, traditionally this species has been considered a cold-
water stenotherm cyanobacterium. Nevertheless, besides
the more recent discovery of populations living in Eastern
Europe (Vasas et al., 2013), records of this species were
documented in many Mediterranean regions, including
Central and Southern Italy ( Messineo et al., 2006; As-
sennato et al., 2010), Sicily (Naselli-Flores and Barone,
2000), Spain (Almodóvar et al., 2004), Greece (Vareli et
al., 2009) and Turkey (Akçaalan et al., 2014; Köker et al.,
2017). More recently, this species has also been identified
in Northern Africa (Guellati et al., 2017). The taxonomic
position of this species has been widely investigated based
both on phenotypic characters (Komárek and Anagnos-
tidis, 2005) and genetic markers (D’Alelio et al., 2013;
Gaget et al., 2015; Kurmayer et al., 2015; Salmaso et al.,
2016; Suda et al., 2002). Similarly, owing the impact on
water quality of the lakes affected by its development, the
ecology and trophic preferences of P. rubescens have been
widely studied in several lakes (Becker et al., 2005;
Walsby, 2005; Reynolds, 2006).

Unlike many other cyanobacterial species, P. rubescens
is usually found in lakes characterized by (oligo-)
mesotrophic conditions (Reynolds et al., 2002). In this re-
gard, Lake Ledro confirms the oligo-mesotrophic charac-
ter of this species; based on the epilimnetic (0-20) annual
(2012) values of TP, Chl-a and transparency, it can be clas-
sified as meso-oligotrophic. P. rubescens has the tendency

to disappear or develop with rare filaments in oligotrophic
and high eutrophic lakes (Jacquet et al., 2014). It has been
described as a species that develops during the recovery
and oligotrophication processes (Ernst et al., 2001). For
example, in Lake Pusiano this species was identified in the
early 2000s after the implementation of measures that re-
duced the wastewater and nutrient loads into the water-
body (Vuillermoz et al., 2006). Similarly, P. rubescens
gave rise to blooming episodes in Lake Zürich during the
early stages of eutrophication, then it disappeared during
the eutrophic period, and finally reappeared after reduction
of nutrient loads following improvement of sewage treat-
ment plants (Lampert and Sommer, 2007). While the low
development of P. rubescens in oligotrophic environments
is due to deficient concentrations of nutrients or organic
matter (Zotina et al., 2003) not sufficient to sustain high
growth rates, its decrease in eutrophic environments is due
to an excessive reduction of light intensity along the water
column and complete metalimnetic darkening due to epil-
imnetic shading by other algal groups outcompeting
cyanobacteria (e.g., see case studies in Jeppesen et al.,
2005). Conversely, during summer, in medium enriched
lakes, P. rubescens is strictly localized in the illuminated
metalimnetic layers. The metalimnion is characterized by
a strong density gradient with a strong buoyancy force that
prevents mixing avoiding entrainment in surface strata
(Walsby et al., 2004; next section). With an intensity of
light saturation Ik (which indicates the transition from a
light-limited to a light-saturated condition) of around 10
µmol m2 s–1 and light inhibition at around 130 µmol m2

s–1, P. rubescens can be considered a true shade phyto-
plankter, able to grow in low light conditions (Lampert and

Fig. 7. Surface blooms of P. rubescens observed on (A) 28 October 2011 and (B) December 2013 on the northern shore of Lake
Ledro.
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Sommer, 2007). Photosynthesis in this species is still pos-
sible with dim illumination intensities of up to 3-4 μmol
m–2 s–1. In Lake Ledro, the light intensities in the zone of
the greater development of this cyanobacterium (between

the euphotic depth and the layer of maximum development
of the species) were between 2 and 20 µmol
m–2 s–1, i.e. values within the light intensities required to
sustain growth. Therefore, in general, the establishment of
conditions suitable for the growth of Planktothrix requires
a balance between the vertical formation of the metalim-
netic layer (where species can concentrate) and its illumi-
nation, which, in turn, is controlled by the algal production
and shading by other competing species in the epilimnetic
layers and, ultimately, trophic state. In Lake Ledro, these
conditions appeared fully met.

In the metalimnion, cyanobacteria can exploit the nu-
trients available at the interface between the hypolimnion
and the surface depleted layers (Dokulil and Teubner,
2012). In Lake Ledro, during the stratification period,
SRP and TP concentrations at the surface were quite low,
below 5 µg L–1. The higher concentrations of TP detected
around the metalimnion were due to the phosphorus ac-
cumulated in the organic matter produced by phytoplank-
ton (mostly by P. rubescens) and to the higher availability
of nutrients at the interface between epi- and hypolimnion.
Overall, this indicated both the ability of cyanobacteria
located in the metalimnion to take advantage of nutrients
available in the deeper layers and the general availability
of a source of nutrients stored in the metalimnion poten-
tially available through bacterial recycling and mineral-
ization processes.

Metalimnetic positioning and bloom formation

In P. rubescens, the ability to control the vertical
movement and positioning is mostly controlled by the
biosynthesis of gas vesicles and by the fraction of carbo-
hydrates (ballast) produced by photosynthesis within the
cell (reviewed in Salmaso et al., 2014b). The genes en-
coding the proteins that constitute the gas vesicles in P.
rubescens populations isolated from several southern sub-
alpine lakes have been studied by D’Alelio et al. (2011).
These authors found that the populations of P. rubescens
living in Lake Ledro were represented by specific geno-
types possessing gas vesicles less resistant to the hydro-
static pressure compared to the populations living in the
larger and deeper lakes characterized by higher mixing
depths, such as, among the others, lakes Garda, Como and
Maggiore. Moreover, the limited maximum depth of Lake
Ledro (43 m) could assure the survival of the population
of P. rubescens during winter mixing, giving a competi-
tive advantage to the filaments, which could employ the
resources available at the beginning of the vegetative pe-
riod. In the well illuminated surface layers, the floating
caused by the gas vesicles is counterbalanced by higher
carbohydrate production, and cells, becoming denser than
water, sink. At higher depths and lower light intensity, the
production of carbohydrates is low and the cells decrease
their ballast and density, positioning themselves in the

Fig. 8. Mean values of total MC measured at the surface, 10 m
and 20 m; data refer to samples collected between June 2011
and December 2012. The vertical bars indicate the standard er-
rors of the means.

Fig. 9. Relationships between MC and biovolumes of P.
rubescens (BPr) in Lake Ledro; MC = -46.6 + 0.53×BPr, r2 = 0.86,
P<0.001. Data refer to samples collected in the period between
June 2010 and October 2012 at the surface and at 10 m and 20
m; a few occasional samples (8) were collected at 5 m and 15
m. The shaded area indicates the 95% confidence levels.
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metalimnetic layer at a depth (defined neutral buoyancy
depth, zn) (Walsby and Schanz, 2002; Walsby et al.,
2006). In Lake Zurich, filaments of P. rubescens showed
neutral buoyancy after being exposed to PAR illumination
of 6.5 μmol m–2 s–1 and photoperiod of 12:12 hours, cor-
responding to a daily insolation, Qn, of 0.28 mol m–2 d–1

(Walsby et al., 2004; Walsby, 2005). Interestingly, in Lake
Ledro the above PAR illumination value is equivalent to
the mean light intensity that has been measured in corre-
spondence of the maximum metalimnetic development of
P. rubescens in the stratified period (i.e., 6 μmol m–2 s–1).
The zn values increases or decreases in response to high
or low brightness conditions, respectively. During the
warmer months, when zn exceeds the mixed depth zm, P.
rubescens will be stratified in the metalimnion (Fig. 2
C,D). In autumn, with the concurrent decrease of the
depth of neutral buoyancy zn, which is caused by the de-
crease in light intensity and day length, and the deepening
of the mixed layer, zmix, the metalimnetic thickening of P.
rubescens begins to erode. When zmix >zn, the filaments
are mixed and transported up to the surface, experiment-
ing higher daily average insolation and decreasing buoy-
ancy (Micheletti et al., 1998; Walsby and Schanz, 2002).
With further water cooling and increase in zm, the average
daily insolation Qv experienced by the filaments of P.
rubescens decreases to values equivalent or below to Qn,
making filaments able to float again and forming, during
calm windy conditions, surface blooms (Walsby et al.,
2006). Once at the surface, and in the presence of light
breezes, the filaments can rapidly move from the pelagic
zone to the lake shores and bays (Fig. 7A-B). Conversely,
as summarized by Cuypers et al.,( 2011) and Kurmayer
et al., (2015), internal waves can induce pronounced ver-
tical displacements: in a seasonal study these authors de-
scribed vertical shifts up to 10 m for P. rubescens.

The increase in buoyancy and the entrainment of the
filaments of P. rubescens during the autumn and winter
months are the mechanisms explaining the spectacular
blooms that have been described in many lakes. These
events often influenced the historical folklores and gave
rise, for example, to the legend of the Red Cock in Lake
Stechlin (Padisák et al., 2010) and to the myth associated
with the red discoloration of Lake Murten in Switzerland.
The latter one was interpreted as the blood of Burgundian
soldiers thrown in the lake in 1476, after the siege of
Murten (Walsby et al., 2006). Besides Lake Ledro, in the
Italian peninsula intense red autumn and winter blooms
were documented in lakes Iseo, Pusiano, Occhito and
Vico (Manganelli et al., 2014; Salmaso et al., 2014b).

Biovolume levels and cyanotoxins

The maximum biovolumes attained by P. rubescens in
the metalimnetic layer during the warmest months (gen-
erally between 3000 and 8000 mm3 m–3) were one order

of magnitude higher than those usually recorded in olig-
otrophic environments, such as the largest and olig-
otrophic subalpine lakes; conversely, these values were of
the same order of magnitude of the biovolumes recorded
in smaller waterbodies, such as lakes Occhito and Pusiano
(Salmaso et al., 2014a, 2014b). Similarly to Lake Ledro,
these two lakes showed the formation of huge surface
water blooms. In Lake Occhito, the blooms raised serious
concerns due to the use of the waters contaminated by MC
for drinking purposes (Di Gregorio et al., 2017).

The concentrations of MC recorded in Lake Ledro
showed a clear relationship with the biovolumes of P.
rubescens. The slope of the regression (Fig. 9) gives an
estimate of the increase of MC per unit increase of bio-
volume (fg µm–3), therefore providing an estimate of the
cell quota, CQ, the quantity of toxins per unit biovolume.
Though based on a more extended dataset of Lake Ledro,
including also data collected between 5 m and 15 m, the
slope relating MC and the biovolumes of P. rubescens ob-
tained in this work (0.53) was coincident with the slopes
computed by Salmaso et al., (2013, 2014a) using both or-
dinary least square linear regressions (0.51) and Bayesian
analyses (0.51). These CQ were the same as those esti-
mated from the samples collected in Lake Garda, suggest-
ing the presence of similar chemotype populations in the
two lakes. Overall, the concentrations recorded in Lake
Ledro occasionally presented values above 1 µg L–1,
which is the limit set by the recent Italian regulatory level
for MC in drinking water. However, it is worth to high-
light that the highest concentrations were recorded during
the summer months in the metalimnetic layers, whereas
at the surface occasional values >1 µg L–1 were found only
during the winter months. The few measurements made
during the surface blooms confirmed the presence of high
(even >20 µg L–1) concentrations of MC. Nevertheless, as
highlighted in previous investigations, a more realistic as-
sessment of toxicity and potential adverse health effects
should take into account the actual toxicity of the more
abundant congeners (Cerasino and Salmaso, 2012;
Salmaso et al., 2014a). Assuming MC-LR as the reference
MC with a Toxic Equivalent Factor, TEF = 1, the most
abundant MC congeners in the populations of P.
rubescens living in Lake Ledro, i.e. MC-RRdm and MC-
LRdm, have TEFs around 4 and 3 times lower than MC-
LR, respectively (Wolf and Frank, 2002).

CONCLUSIONS

Among cyanobacteria, P. rubescens is a species that
is well adapted to develop in moderately nutrient rich and
deep lakes, such as Lake Ledro. In this typology of wa-
terbodies, the competitive abilities of this species rely in
its capacity to stand and growth in the dimly illuminated
metalimnetic layer during the warmer months. As a matter
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of fact, during summer (when the touristic presence
around the lake is at the top) the lake water is character-
ized by ‘clean’ conditions and high transparency, with val-
ues generally higher than 8 m. Paradoxically, the lowest
transparency values in this lake are measured during the
winter months, after the entraining of the cyanobacterium
in the mixed layer. The formation of extended red water
blooms in this deep meso-oligotrophic lake characterized
by the formation of a deep metalimnion is a phenomenon
common to other lakes with same characteristics.

P. rubescens populations in Lake Ledro were always
toxic in the considered period. Hepatotoxic MCs were
constantly associated to the cyanobacterium presence,
while the presence of other toxins (namely, the neurotoxic
ATX) was not significant. The total MC distribution in the
water column was related to P. rubescens distribution
showing maximum values in the metalimnetic layer
(highest value: 4.4 µg L–1 recorded in August 2011). The
MC profile resulted to be constant, with the two variants
MC-RRdm and MC-LRdm always dominating. The cal-
culated CQ (0.53 fg µm–3) was in agreement with previous
observations (Salmaso et al., 2013, 2014a). All these ev-
idences suggest that the chemotype of P. rubescens is con-
stant in Lake Ledro.

The development of very dense P. rubescens blooms
associated to consistent production of MC deserve further
investigation of the ecological and toxicological aspects
aimed, for instance, at assessing the potential impact of
such high toxin levels on the aquatic flora and fauna (fish
community), and on the complete genetic and genomic
characterization of toxigenic planktic species, including P.
rubescens and also other cyanobacteria living in the lake.
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