The toxic benthic dinoflagellates of the genus Ostreopsis in temperate areas: a review


Submitted: 19 October 2015
Accepted: 8 February 2016
Published: 27 April 2016
Abstract Views: 4428
PDF: 1737
HTML: 1844
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

The genus Ostreopsis includes species largely distributed from tropical to temperate marine areas worldwide. Among the nine species of the genus, O. siamensis, O. mascarenensis, O. lenticularis and O. cf. ovata can produce toxins of the palytoxin group. In the last decade Ostreopsis cf. ovata and O. cf. siamensis originated intense blooms in all the rocky Mediterranean Sea coastal areas, typically during summer-late summer. The correct identification of Ostreopsis species in field samples is often problematic as Ostreopsis species are morphologically plastic and hardly discriminable under light microscopy and, therefore, molecular analyses are required. Ostreopsis blooms are often associated with noxious effects on health of both humans and benthic marine organisms mainly carried by aerosol and direct contact with seawater. Environmental factors have been shown to affect toxin content of Ostreopsis which generally produces more toxins per cell when growing under suboptimal conditions. O. cf. ovata is able to produce both temporary and resting cysts. In particular, the resting cysts are able to germinate in laboratory conditions for as long as 5 months after their formation at 25°C, but not at 21°C; the presence of a temperature threshold affecting cyst germination in the laboratory suggests that temperature represents a key factor for Ostreopsis cf. ovata bloom onset in natural environments as well. Several studies conducted to assess the role of abiotic factors (mainly hydrodynamics, water temperature and nutrients) on the bloom dynamics, revealed that the synergic effects of hydrodynamics, temperature and N:P ratios would lead the Ostreopsis blooms in temperate areas. Ostreopsis abundances showed a significant decrease with depth, likely related to light availability, although there are conflicting data about the relationship between light intensity and Ostreopsis growth in experimental conditions. The relationship between Ostreopsis blooms and salinity is not completely clear, complicated by the influence of high nutrient levels often associated to low salinity waters. Finally, Ostreopsis colonize a variety of substrata, although living substrata seems to allow lower concentration of epibionts than any other substrate, probably due to the production of some allelopathic compounds.


Supporting Agencies

ISPRA-Italian Ministry of the Environment, MURST (PRIN 2007), ENPI CBCMED M3-HABs project

Accoroni, S., & Totti, C. (2016). The toxic benthic dinoflagellates of the genus Ostreopsis in temperate areas: a review. Advances in Oceanography and Limnology, 7(1). https://doi.org/10.4081/aiol.2016.5591

Downloads

Download data is not yet available.

Citations