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Abstract
This study aims to evaluate the

behaviour of Listeria monocytogenes under
fluctuating temperature comparing the effi-
cacy of deterministic and stochastic meth-
ods for its prediction. In the first part of the
study, a strain of L. monocytogenes was
maintained at two different fluctuating tem-
perature regimes both from 2 to 8°C and
regularly sampled for the quantitative deter-
mination. The first temperature regime last-
ed 204 hours with a fluctuation length of 12
hours whereas the second lasted 167 hours
with a fluctuation length of 24 hours. A
dynamic predictive model was implement-
ed for the reproduction of the observed data.
Model resolution has been carried out by
using values of the recorded temperature as
well as the value of the mean temperature,
the kinetic mean temperature, the 75th and
95th percentile of the temperature. A
stochastic resolution was also performed
considering the mean temperature and
Standard Deviation as stochastic variable.
In the second part of the study, a tempera-
ture mean curve was constructed by moni-
toring temperature of 8 refrigerated con-
veyances, 10 display cabinet and 15 domes-
tic refrigerators. This curve was used to
obtain predictive scenarios for L. monocyto-
genes based on the above and also consider-
ing temperature regime suggested by the
EURL Lm TECHNICAL GUIDANCE
DOCUMENT on challenge tests and dura-
bility studies for assessing shelf-life of
ready-to-eat foods related to Listeria mono-
cytogenes (Version 4 of 1 July 2021). All
predicted behaviours were compared to the
observed ones through the Root Mean
Squared Error. Firstly, dynamic predictive

model as well as the stochastic one, provid-
ed the best level of reproducibility of the
observed data. The kinetic mean tempera-
ture reproduced the observed data better
than the mean temperature for the 12 hours-
regime while for the 24 hours-regime was
the opposite. The 75th and 95th percentile
overestimated the observed growths.
Secondary, predictions obtained with the
mean temperature, kinetic temperature and
stochastic approach well fitted the observed
data. The 75th and 95th percentile of
Temperature and the “Eurl LM” tempera-
ture regimes overestimated the observed
prediction. Dynamic approach as well as the
stochastic one allowed to obtain the lowest
values of Root Mean Squared Error. The
mean temperature and kinetic mean temper-
ature appeared the most representative val-
ues in a deterministic “single-point”
approach.

Introduction
Nowadays, the food safety management

approach is challenged by the global dimen-
sions of food supply chains, the need for
reduction of food waste and the environ-
mental pollution that is the cause of the aris-
ing of emerging hazards (Uyttendaele et al.,
2016; Nalbone et al., 2021). In the interna-
tional context, borders are fading, especial-
ly for the globally traded commodities.
There is a great divergence in the degree of
organization, infrastructures, teaching
capacity across countries and food safety
can be compromised by specific hazards
related to the country of origin (Arab et al.,
2020, 2021) as well as to the complexity of
the food chain supply.

The cold chain for perishable products
is significantly complex since it is articulat-
ed in several phases and on the responsibil-
ity of many stakeholders (Brenner, 2015).
This complexity is, often, the cause of tem-
perature abuses that affect the safety and
quality of food and produce important eco-
nomic losses. Some phases of the supply
chain are well recognized as critical points
such as the transport and the storage at the
warehouse, retail, and domestic level.
Derense et al. (2006) showed that tempera-
ture is critical in the last three phases of the
cold chain: storage in display cabinet
(7.3%), transport after shopping (59.7%)
and domestic storage (40.3%). These results
were confirmed by Morelli and Derens
(2009), Koutsoumanis et al. (2010) and
Landfeld et al. (2011).

The results of the Frisbee European
Project (Food Refrigeration Innovation,
Safety Consumers’ Benefit, Environmental
Impact and Energy Optimisation, 2010-

2014) confirm that the most sensitive links
are transportation after purchase and, partic-
ularly, the storage in household refrigera-
tors, while display cabinets temperature
tends to be under better conditions than in
the past (decrease in the mean product tem-
perature and a lower percentage of products
in which the temperature is higher than the
specified temperature).

Concerning domestic storage, Roccato
et al. (2017) carried out a comprehensive
retrospective analysis of 15 European stud-
ies on household refrigerator temperature.
Analysis of temperature distributions
revealed two geographical groups: northern
European countries and southern European
countries. The overall variability of
European domestic temperature refrigera-
tors resulted described by a normal distribu-
tion: 7.0±2.7°C (mean standard ± deviation)
for southern countries, and 6.1±2.8°C for
the northern countries. More recent research
(Dumitrescu et al., 2020) about domestic
refrigerator temperatures in five European
countries (French, UK, Portugal, Romania
and Norway), for specific consumer groups,
has evidenced an overall average tempera-
ture of 6.3, 4.6, 5.5, 5.7 and 5.6 respective-
ly; therefore, these results could be consid-
ered similar to those reported by Roccato et
al. (2017). All the above surveys, besides
confirming the cold chain weakness, raise
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two important matters. The former regards
the choice of the best suitable approach for
mimicking the temperature chain evolution
in shelf-life studies since all cited data
shows a wide temperature fluctuation at
each supply chain level. The second con-
cerns the use of a deterministic or a stochas-
tic approach to predict microbial behaviour,
since, according to some Authors (IAFP,
2013; Membré and Guillou, 2016; Roccato
et al., 2017), the use of a single temperature
value in mimicking the temperature chain
(“single-point approach”) would not con-
sider the complexity of the environmental
characteristics and the related influence on
the bacterial population with a potential
overestimation of the bacterial dynamics.

Concerning the shelf life studies, the
EURL Lm TECHNICAL GUIDANCE
DOCUMENT on challenge tests and dura-
bility studies for assessing shelf-life of
ready-to-eat foods related to Listeria mono-
cytogenes (Version 4 of 1 July 2021). indi-
viduate three time/temperature intervals in
which divide the product shelf life: i) “From
the manufacture until the arrival to the dis-
play cabinet”: 1/3 of shelf life (or a maxi-
mum of 7 days if shelf life > 21 days) with
a temperature of 7 °C or the 95th percentile
of the Food Business Operator’s data obser-
vation; ii) “Retail – display cabinet”: 1/3 of
shelf life (or ½ shelf life – 7 days if shelf life
is > 21 days) with a temperature of 7°C or
the 95th percentile of the temperature obser-
vations for the country where the stage of
the cold chain is located; iii) “Consumer
storage”: 1/3 of shelf life (or ½ shelf life –
7 days if shelf life is > 21 days) with a tem-
perature of 12°C or the 95th percentile of the
temperature observations for the country
where the stage of the cold chain is located.
The use of the 95th percentile of temperature
has been considered by some authors (IAFP,
2013; Roccato et al., 2017) an unrealistic
approach even for mimicking a “reasonable
temperature abuse”. A more realistic repre-
sentation of temperature abuse along the
food supply chain is probably given by the
75th percentile of the temperature trend but,
also in this case, it is about a “worst-case
scenario” approach that does not consider
the global effect of temperature fluctuation
on microbial growth and, consequently, on
shelf-life duration. Although all above-cited
studies have analysed temperature trend
along the food supply chain and have pro-
posed a single point approach for its repre-
sentation, only a few researchers have relat-
ed the effect of temperature fluctuation on
microbial growth and have identified a sin-
gle temperature value that correctly repro-
duces the bacterial behaviour. The applica-
tion of stochastic predictive models has
been widely explored to reproduce the vari-

ability of environmental parameters (eg.
temperature fluctuation) and to assess the
related microbial responses (Giuffrida et
al., 2009; Koutsoumanis et al., 2010;
Valenti et al., 2013, 2016). However, if the
stochastic approach could reproduce the
variability of microbial responses along
with a risk assessment framework, it does
not clarify the relationships among the
reproduced stochastic scenarios and the
individuation of single environmental val-
ues such as temperature, pH, aW, that can
be used in shelf-life studies.

The present study aims to establish the
relation between temperature fluctuations
and the Listeria monocytogenes growth
through a dynamic predictive approach, to
assess the best “single point” method of
representing the temperature trend, compar-
ing a deterministic versus a stochastic mod-
elling approach too.

Materials and methods

Study planning
The present study has been articulated

in two main phases. In phase 1, cultures of
a strain of Listeria monocytogenes (ATCC
13932), preincubated at 10°C, were subject-
ed to two kinds of experimental temperature
regime; the former (Tr12) fluctuated from
2±1°C to 8±1°C over a period of almost 12
hours and the latter (Tr24) over a period of
almost 24 hours. Cultures were subjected to
the temperature regimes “Tr12” and “Tr24”
for 204 hours and 167 hours, respectively,
and sampled at regular time intervals for the
count of the L. monocytogenes. The temper-
ature has been recorded with a data logger
Smart-Vue™ 868MHz SV204-101-LSB
(Thermo fisher Monza, Italy) set with a
sampling frequency of 15 minutes.

Observed growth curves have been
reproduced by a dynamic predictive model
which considers, step by step, the recorded
temperature fluctuations for both regimes
(Tr12 and Tr24). The model (see below for
details) has been used for further predic-
tions with the mean temperature (mT), the
mean kinetic temperature (mkT)
(Giarratana et al., 2020), the 75th and 95th

percentile of temperature. A further stochas-
tic resolution of the predictive model has
been carried out replacing each temperature
recorded value with the Normal
Distribution Value (mT value ± standard
deviation) of the temperature. In this case,
the obtained growth prediction has been
resulted by the mean value, for each step, of
1000 resolution (iterations) of the model.
Iterations have been carried out by the
Excel NORM.INV function (Microsoft

Corporation) that returns the inverse of the
normal cumulative distribution for a speci-
fied mean and standard deviation value (in
our case, the mean and standard deviation
of observed temperature value). This func-
tion has been associated with the RAN-
DOM function in order to obtain 1000 iter-
ations. The agreement level between pre-
dicted and observed curves was measured
by calculating the Root Mean Squared Error
(RMSE).

Phase 2 of the study has aimed to
acquire temperature data on the three main
sectors of the food supply chain in order to
obtain a mean trend of temperature for 21
days. Particularly, it has been monitored: i)
the temperatures of transport from the man-
ufacture until the arrival to the display cab-
inet; ii) the temperatures at retail in the dis-
play cabinet; iii) the household refrigerator
temperatures. For the first sector, the tem-
perature data of eight means of transports of
cold-smoked salmon were considered; for
the second part of the chain, the temperature
of ten display cabinets of five large retailers
have been monitored, considering both
open and closed types; finally, concerning
the domestic storage, fifteen household
refrigerators have been monitored. Mean
values for a time of seven days for each sec-
tor have been considered to construct a tem-
perature trend of 21 days; this complete set
of data has been used for the application of
the aforementioned predictive dynamic
model for L. monocytogenes and further
predictions with mean temperature, mean
kinetic temperature, 75th and 95th per-
centile of temperature and for the applica-
tion of the dynamic stochastic model. A fur-
ther kind of prediction, for this Phase of the
study, has regarded the use of temperature
profile suggested by the aforementioned
“EURL Lm TECHNICAL GUIDANCE
DOCUMENT for conducting shelf-life
studies on Listeria monocytogenes in ready-
to-eat foods”. The temperature values have
been set at 7°C for 14 days and 12°C for 7
days (T Eurl-LM).

In order to evaluate the effectiveness of
the predictions, the RMSE value has been
calculated among the dynamic prediction
that has been used as reference growth
curve, in this case, and the other ones (mT,
mkT, 75th percentile, 95th percentile, T Eurl-
LM, stochastic prediction).

Microbiological analysis
According to the EURL Lm TECHNI-

CAL GUIDANCE DOCUMENT (2019),
one Cryobeads containing the strain of L.
monocytogenes ATCC 13932 was trans-
ferred from the frozen stock (-80°C) in 9 ml
of Tryptic Soy Broth (TSB) (Biolife,
Milano, Italy) and incubated at 37°C for
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about 15-18 hours. After this period (time
necessary for the organism to reach the
early stationary phase about 9.20 Log
cfu/ml) from this subculture (subculture 1),
100 µl were transferred to 9 ml of TSB and
incubated a 10°C for 3 days in order to
adapt the strain to the storage condition of
phase 1. The incubation period of 3 days is
at 10°C the time necessary for the L. mono-
cytogenes to reach the early stationary
phase, to shorten the lag phase once inocu-
lated. 

Successive dilutions in 9 ml tubes of
TSB from the obtained subculture 2 were
done until to reach the presumptive concen-
tration of 4 log10 cfu/ml; from this last tube,
instead, one ml was inoculated in six glass
bottles with 99 ml of TSB respectively,
reaching the final required presumptive
concentration of 2 Log cfu/ml. The so
obtained six final L. monocytogenes suspen-
sions were used for the two kinds of exper-
imental temperature regimes, 3 for each
condition. The results are reported as the
mean value of these 3 repetitions. 

The initial L. monocytogenes concentra-
tion and those of other intervals were enu-
merated on plates of Agar Listeria acc. to
Ottaviani & Agosti (ALOA ®) (Biolife,
Milano, Italy) incubated at 37°C for 24-48
hours as reported in the ISO 11290-2:2017
method.

Predictive model
The dynamic predictive model for L.

monocytogenes has been implemented
through the association of a primary and a
secondary model. The primary model is the
well-known Baranyi and Roberts (1994)
model, represented by the following set of
differential equations

Eq. 1a

Eq. 1b

where N is the concentrations (Log CFU/g)
of L. monocytogenes at time t; µmax is the
maximum growth rates (h-1) of L. monocy-
togenes; Nmax is the maximum population
densities (Log CFU/g) of the microbial pop-
ulation; Q represents the physiological state
of the population (Baranyi and Roberts,
1994). In order to obtain a dynamical reso-
lution of Eq. 1 (Giuffrida et al., 2009, 2013;
Martinez-Rios et al., 2020), µmax was calcu-
lated at each variation in environmental
parameters (here, every temperature value

of each profile) using the secondary model
proposed by Le Marc et al. (2002).
Differential equations have been numerical-
ly resolved into a spreadsheet of Excel
(Microsoft Corporation) using the Euler
method (Press et al., 2007). As above
described, further resolutions have been
obtained using a single temperature value
(mean temperature – mT; mean kinetic tem-
perature – mkT; 75th and 95th percentile of
temperature; T Eurl-LM). The predictive
model has been also resolved by introduc-
ing a stochastic variable for each
Temperature value, represented by the nor-
mal distribution (mT ± standard deviation)
of the temperature trend. In this case, the
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Table 1. Single value of representing the temperature profiles of phase 1 of the study.

Temperature regime   Mean temperature       Mean kinetic temperature       75th percentile temperature    95th percentile temperature

Tr12                                                           6.95                                                   7.45                                                             9.30                                                          11.27
Tr24                                                           8.97                                                   9.91                                                            12.53                                                         13.33

Table 2. RMSE values. For the phase 1, the RMSE value was calculated against the observed curves of each temperature profile; for the
phase 2, the dynamic prediction has been considered as curve of reference.

                    Dynamic                  mT                     mkT                75th perc.                  95th perc.                    Stochastic              Eurl-LM

Tr12                      0.1907                        0.7271                         0.2881                         1.093                                  1.664                                      0.2423                              ---
Tr24                      0.2141                        0.3372                         0.5199                        2.3312                                2.6852                                     0.3271                                
Phase 2                   ---                            0.1474                            ---                            0.7754                                1.8608                                     0.0601                           2.3152
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Figure 1. Temperature fluctuations (dotted lines) for Tr12 (panel A) and Tr 24 (panel B)
and related observed growth of L. monocytogenes (circles).Non
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obtained curves resulted from the mean of
the curves derived from 1000 iterations.

Concerning the predictions of Phase 1
of the study, N0 and Nmax have been set equal
to the observed values for each mean curve
of L. monocytogenes whereas the initial
value of Q (Q0) has been obtained by the fit-
ting among the predicted curves and the
observed ones, using the solver function of
Excel (Microsoft Corporation).
Furthermore, the application of the dynamic
predictive model was carried out consider-
ing the pH and aW of the broth (7.00 and
0.997 respectively).

In Phase 2 of the research plan, the Q0

has been set as the mean of Q0 values of
Phase 1 (Q0 for Tr12 and Q0 of Tr24); N0

and Nmax have been set equal to Log 1.95
cfu/g and Log 8.6 cfu/g; pH and AW were
set at 6.2 and 0.980 respectively.

Results 

Temperature trends and growths of

Listeria monocytogenes
The growth of L. monocytogenes at the

temperature regimes Tr12 and Tr24 are
shown in Figure 1. The growth at Tr24
resulted faster than the Tr12 one and
reached the Nmax value before the 150th

hour than the curve at Tr12. This is easily
explained because the wider period of the
fluctuation in Tr24 has produced mean tem-
peratures and mean kinetic temperatures
higher than those of the Tr12, as shown in
Table 1. 

The predictive results against the
observed ones are presented in Figure 2 for
both Tr12 and Tr 24. The dynamic predic-
tions, as expectable, have always appeared
in high agreement with the observed data as
shown in Table 2 too, where are reported the
RMSE values for each prediction. The mkT
value produced a better prediction than the
mT value for the Tr12 while, for the Tr24,
mT produced a better agreement to the
observed data, than the mkT. The mkT
probably well expresses the overall effect of
temperature fluctuations on microbial when

the variations are very frequent as for the
profile Tr12 whereas, for larger periods (Tr
24), the mT is enough for considering the
temperature oscillations (Figure 2).

The predictions for the 75th and 95th per-
centile both of Tr12 and Tr24 have appeared
widely overestimated for both profiles, in
respect of observed data. The predictions
obtained with the stochastic resolution of
the model resulted in strict agreement with
the observed data as confirmed by the
RMSE values (Table 2) that are always
closer to those obtained for the dynamic
predictions. Therefore, in the case of exper-
imental fluctuations (Tr12 and Tr24), the
predictive stochastic model based on the
normal distribution of the Temperature (mT
± standard deviation) appears a useful
method of representing the relation between
temperature fluctuations and bacterial
behaviour, also showing the effectiveness of
the mean temperature (or kinetic mean tem-
perature) as more correct “single point”
approach than the 75th or 95th percentiles.

                             Article

Figure 2. Observed (Obs) and predicted growth curves for Tr12 (panel A) and Tr24 (panel B).

Figure 3. In panel A the temperature recorded for the entire food supply chain and related single values representing the temperature
fluctuations for each sector (“Transport”, “Retail”, “Home”). In the panel B the dynamic prediction (“Dynamic”) and further predicted
growth curves for deterministic and stochastic representation of temperature fluctuations along the entire food supply chain.
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Temperature along food supply
chain and simulation of L. monocy-
togenes behaviour

The recorded mean trend temperature
for the three sectors of the chain supply is
reported in Figure 3 together with the mean
temperature, the “T Eurl-LM”, the 75th and
95th percentile of temperature, while the
mean kinetic temperature for each sector
has not been reported because it has result-
ed comparable to the mean one. Similarly,
to phase 1 of the study (Table 1), also in this
case there was a wide distance among mean
temperatures and 75th or 95th percentile of
temperature and this has been reflected on
the related growth predictions. In this
regard, as Figure 3 and Table 2 pointed out,
the prediction with mean temperature has
agreed to the dynamic one, which has been
considered as a reference curve for this
phase, according to the results of phase 1.
Conversely, the predictions with 75th and
95th percentile give an unrealistic scenario.
Figure 3 shows also that the application of
the temperature profile “T Eurl-LM” has
produced the highest overestimation of L.
monocytogenes growth.

Finally, also in this case, the application
of the stochastic model has produced a pre-
diction with the highest level of agreement
to the curve of reference, giving a robust
explanation on the meaning of mean tem-
perature value as the most significant for
the reproduction of the microbial behaviour
under a fluctuating temperature regime.

Discussion and conclusions
In the last decade, the shelf life of

refrigerated foods has been widely studied
and debated from many points of view.
Several studies have concerned the prolon-
gation of perishable food shelf life using
“natural compounds” (Trabelsi et al., 2019;
Ed-Dra et al., 2020) and/or the application
of the “hurdle technology” (Leistner, 2000;
Singh and Shalini, 2016; Trabelsi et al.,
2021). Many other studies have evaluated
the applicability of shelf-life predictive
models based on the characterization of the
behaviour of pathogenic or spoilage
microorganisms (Dalgaard, 1995;
Neumeyer et al., 1997; Giuffrida et al.,
2013; Martinez-Rios et al., 2016; Martinez
Rios et al., 2020; Ed-Dra et al., 2021). In
both cases, the knowledge of temperature
history over the food chain supply has
resulted in an extremely conditioning factor.
For this reason, other research (Derense et
al., 2006; Morelli and Derens, 2009;
Landfeld et al., 2011; Roccato et al., 2017;
Dumitrescu et al., 2020;) have described the

storage temperature evolution in the main
sectors of the food chain stressing the ther-
mal abuses and the related potential food
safety impact. Regarding these data, the
subsequent individuation of the 75th or 95th

percentile of the temperatures has been the
consequence of the need of representing
these thermal abuses through a “single
point” approach. This approach, however,
contains a point of weakness because it
does not consider the relation between tem-
perature fluctuations and microbial
behaviour, and it neglects the effect of low
temperature values on the prolongation of
the bacteria lag phase or the reduction of the
growth rate. This effect is related to the fre-
quency of the fluctuations as well as to
other several parameters related to the food
nature, and it cannot be neglected. On the
other hand, the use of the 75th percentile
and, especially, of the 95th percentile of the
temperature cannot be simply considered a
“worst-case scenario” approach because
these values describe a partial region of the
temperature fluctuations, neglecting the
lower temperature bracket. Normally, as
also observed in the present study, the tem-
perature fluctuates equidistantly around the
mean value, so a “worst-case scenario”
should consider a high mean temperature
but an equidistant fluctuation around the
mean and not a fluctuation unbalanced
towards high values. Therefore, the mean
value of a temperature curve could be con-
sidered the best way to represent that curve
with a single value since it considers the
entire fluctuation around the mean value.

The results of the present study confirm
the above considerations because the curves
obtained with mean temperature values (or,
in one case, with the mean kinetic tempera-
ture values) reproduce, with a good agree-
ment (RMSE Tm = 0.1474; RMSE 75th

perc. = 0.7754; RMSE 95th perc. = 1.8608;
RMSE EURL Lm = 2.3152), the observed
curves and have appeared always very sim-
ilar to the predictions obtained by the
dynamic approach that considers each value
of the temperature fluctuation but is appli-
cable only if the entire temperature history
is known. Also, the stochastic resolution of
the predictive model has reproduced very
well the observed (or reference) data,
because it reproduces the influence of tem-
perature fluctuations on the bacterial
behaviour, better than the deterministic pre-
dictions. As well known (Giuffrida et al.,
2009, Koutsoumanis et al. 2010,
Koutsoumanis, 2016), stochastic predictive
models are very useful in the risk assess-
ment processes and, according to our
results, this method can help to estimate the
shelf life of a food category under a fluctu-
ating temperature regime as normally

occurs along with the food chain supply.
When the deterministic approach must be
applied (e.g., challenge or storage tests), the
mean temperature value can produce a real-
istic scenario of storage since it includes the
temperature abuses as well as the other fluc-
tuation data. 

The temperature mean values recorded
in the present study for representing the
entire food chain supply (phase 2), despite
being referred only to a few distribution
cycles, appeared very similar to those
reported by the main above cited studies on
the temperature of retail or domestic stor-
age, therefore, the predictions obtained in
phase 2 of the study confirm that the tem-
perature profiles suggested by the “EURL
Lm TECHNICAL GUIDANCE DOCU-
MENT for conducting shelf-life studies on
Listeria monocytogenes in ready-to-eat
foods” (here “T Eurl-LM” and 95th per-
centile of Temperature”) could produce
unrealistic scenarios for the growth of L.
monocytogenes in refrigerated ready to eat
food and, consequently, for establishing the
related shelf life. 
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