Publisher's Disclaimer. E-publishing ahead of print is increasingly important for the rapid dissemination of science. The Early Access service lets users access peer-reviewed articles well before print/regular issue publication, significantly reducing the time it takes for critical findings to reach the research community. These articles are searchable and citable by their DOI (Digital Object Identifier).

The Italian Journal of Food Safety is, therefore, E-publishing PDF files of an early version of manuscripts that have undergone a regular peer review and have been accepted for publication, but have not been through the copyediting, typesetting, pagination, and proofreading processes, which may lead to differences between this version and the final one.

The final version of the manuscript will then appear in a regular issue of the journal.

The E-publishing of this PDF file has been approved by the authors.

Please cite this article as:
Abdullah SH. Molecular evidence of Toxoplasma gondii from the tissue and blood of naturally infected sheep. Ital J Food Saf doi:10.4081/ijfs.2024.12257

Submitted: 04-01-2024
Accepted: 29-02-2024

© the Author(s), 2024
Licensee PAGEPress, Italy

Note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries should be directed to the corresponding author for the article. All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Molecular evidence of *Toxoplasma gondii* from the tissue and blood of naturally infected sheep

Shadan Hassan Abdullah

Department of Microbiology, College of Veterinary Medicine, University of Sulaimani, Sulaymaniyah, Iraq

Correspondence: Shadan Hassan Abdullah, Department of Microbiology, College of Veterinary Medicine, University of Sulaimani, Sulaymaniyah, Iraq. E-mail: shadan.abdullah@univsul.edu.iq

Key words: toxoplasmosis, heart, diaphragm, blood, sheep, PCR.

Conflict of interest: the author declares no conflict of interest related to the study.

Ethics approval and consent to participate: the ethics committee of the College of Veterinary Medicine, University of Sulaimani, approved the study. Since part of the study was conducted on slaughter carcasses and other parts of live animals, permission was obtained from their owner. Blood sampling was performed based on scientific guidelines.

Funding: none.

Availability of data and materials: data and materials are available from the corresponding author upon request.

Acknowledgments: the author would like to thank the owners, the local veterinarian, and the abattoir staff for their cooperation during sampling, and valuable insight, which improved the clarity of the manuscript.
Abstract
Toxoplasmosis is a cosmopolitan zoonotic infection that has significant effects on public health and causes economic losses in the livestock industry. The current study was designed to detect the *Toxoplasma* parasite in sheep blood samples and tissue samples of slaughtered sheep at the Sulaimani abattoir using molecular techniques.

A total of 300 peripheral sheep blood samples were randomly collected from 20 small ruminant flocks at 4 locations in the Sulaymaniyah province, northern Iraq. Also, 150 meat samples from thigh muscle, heart, and diaphragm were collected from slaughtered sheep.

All collected blood samples were subjected to polymerase chain reaction (PCR) amplification to confirm *Toxoplasma* infection; in addition, meat samples were also analyzed for *Toxoplasma* by PCR following the digestion process. Of the 300 amplified blood samples, 94 were considered positive for *Toxoplasma gondii*, with a prevalence rate of 31.3%. The overall prevalence of *Toxoplasma* among meat samples was 34%. The diaphragm reported a higher infection rate (46%) than the heart (32%), while the femoral muscle reported an infection rate of 24%. Aged animals (older than 24 months) presented a higher infection rate (32.8%) than younger animals (28.9%). Contact with or consumption of uncooked meat from infected sheep increases the chance of parasite transmission to humans.

Introduction
Toxoplasmosis is caused by *Toxoplasma gondii* (a coccidian parasite belonging to the phylum Apicomplexa) *T. gondii* can infect almost all warm-blood animals as well as humans (Amdouni et al. 2017).

Toxoplasmosis was stated as the most prevalent parasite-origin zoonotic disease worldwide (Tenter et al., 2000). It was reported from all continents, with various infection rates. Cats in particular are a definitive host for the parasite, and other infected animals and humans serve as intermediate hosts (Dubey, 2010). Several millions of resistant oocysts are expelled by the definitive host during the early stages of infection (Opsteegh et al., 2010). The sporulation of oocysts occurs over 1-5 days under natural environmental conditions (Motarjemi et al., 2014).

T. gondii may transmit either horizontally or vertically. During vertical transmission, tachyzoites infect the fetus from the mother through the placenta and cause congenital toxoplasmosis. Horizontal infection occurs after eating meat (or organs) from an infected intermediate host that harbors the tissue cysts (Guo et al., 2015) or through the ingestion of sporulated oocyst shed in cats’ feces from soil, water, and plants (Motarjemi et al., 2014). Toxoplasmosis results in significant financial losses in the sheep industry on a global scale due to abortions and other reproductive failures (Ferreira Da Silva et al., 2013).

Risk factors for infection by *T. gondii* include outdoor admittance following exposure to soil and water and animal feed kept in a location where cat excrement might be present (Klun et al., 2006).

Livestock animals, as sources of meat for human food, serve as a reservoir for *T. gondii* (Boyer et al., 2005). The main source of parasite infection in humans is raw or undercooked meat from slaughtered animals (Sroka et al., 2020).

Infection in humans is mostly asymptomatic; however, congenital toxoplasmosis might be associated with serious complications such as abortion, hydrocephalus, chronic ocular disease, lymphadenopathy, and death in newborns. Moreover, retinitis and encephalitis might occur in immunosuppressed patients (Hill and Dubey, 2002). In ruminants, abortion and stillbirth could occur as a consequence of toxoplasmosis, which accompanies significant economic losses in the animal industry (Cenci-Goga et al., 2011).

Toxoplasma-infected sheep are thought to be a primary parasite infection source for both humans and predatory animals (Dubey, 2009). To diagnose toxoplasmosis, various serological and molecular methods have been employed in both humans and animals worldwide (Armand et al., 2016).
Raw or undercooked meat from warm-blooded animals, including sheep and goats, allows the infection to enter the human food chain. Because the parasite stages are visible only under a microscope, they are not detected during meat inspection (Shapiro et al., 2019). The impossibility of detecting Toxoplasma infection from contaminated carcasses by visual inspection in the slaughterhouse necessitates the application of various laboratory methods. The molecular methods offer the advantages of prominent sensitivity and high specificity with high speed in diagnosis (Anvari et al., 2018).

Polymerase chain reaction (PCR)-based techniques have been applied for the identification of Toxoplasma DNA in meat and meat-producing animals (Guo et al., 2015). The parasite appears to be easier to recognize with the Toxoplasma 529-bp fragment (Yang et al. 2009). Various studies determined Toxoplasma seropositivity in small ruminants, while its molecular estimation from the blood and tissue of food animals was not well defined. So, the current study aimed to find out the infection rate of toxoplasmosis in sheep, and besides that, it tried to clarify the Toxoplasma's existence in meat samples of slaughtered sheep, which are used as a main source of food in the study area.

Materials and Methods

Animals and sample collection
A total of 300 sheep were selected randomly from 20 small ruminant flocks from different regions belonging to the Sulaymaniyah province for the collection of blood samples between June and December 2021. The selected farms belonged to four regions, and animals were reared under a semi-intensive rearing system, with traditional management.

Approximately 5 mL of blood was drawn from the jugular vein of each animal and collected in a tube with anticoagulant. Samples were transported in cold conditions to the laboratory at the College of Veterinary Medicine of Sulaimani University and stored at -80°C until DNA extraction.

Tissue samples from the heart, diaphragm, and femoral muscle were collected from slaughtered sheep in the Sulaimani abattoir. Samples were randomly selected among the slaughtered animals; approximately 10 g of tissue samples were collected from 150 sheep carcasses using sterile disposable blades and transferred to plastic bags. Then, they were transferred under cold conditions to the laboratory and stored at 4°C until performing tissue digestion procedures over 2-4 days.

DNA extraction
DNA extraction was performed for all blood samples collected using Ge Net Bio Kit (South Korea). According to the manufacturer’s instruction protocol, extracted DNA aliquots were stored at -80°C till performing PCR assay.

All meat tissue samples were digested with pepsin solution according to the method described by Dubey and Beattie (1988). Approximately 5 g of each tissue sample was cut with a sterile scalpel and mixed with 50 mL of acid pepsin solution composed of 2.6 gm of pepsin, 7 mL of HCl, 0.9% of NaCl and filled up with distilled water to 500 mL with a pH 1.1-1.2. Samples were left for digestion at room temperature for 90 minutes. Digested materials were filtered through gauze, and centrifuged at 1200×g for 10 minutes. Pellets were collected and resuspended in 10 mL of phosphate buffer saline (pH 7.4), again centrifuged at 1200×g for 10 minutes. The supernatant was removed, and the sediment was transferred to a sterile Eppendorf, resuspended in 1 mL of normal saline, and stored at -80°C for DNA extraction in the next step.

Genomic DNA was extracted from tissue suspension samples using the extraction kit from Trans Gen Biotech (China). A volume of 0.5 mL from the homogenate was used for DNA extraction and suspended in 200 µL lysis buffer in a 1.5 microcentrifuge tube; 20 µL of proteinase K was added and followed the extraction procedures. All DNA aliquots were stored at -80°C for performing PCR reaction.
Polymerase chain reaction assay
All extracted DNA samples were subjected to PCR assay by applying previously used primer sets TOX4 (5'CGCTGCAGGGAGGAAGACGAAAGTTG3') and TOX5 (5'CGCTGCAGACACAGTGCATCTGG ATT3'), which amplified a nearly 530 bp fragment of the *T. gondii* genome (Homan et al., 2000). PCR was carried out in a programmable Thermal Cycler (Prime, UK) and ran out in a 20 μL reaction volume consisting of 10 μL of master mix from (Ge Net Bio company), 5 μL of sample genomic DNA with 1 μL from each Sens and anti-Sens primers, and the volume was completed with double-deionized water. The amplification conditions were the following: initial denaturation at 93°C for 5 minutes, followed by 30 cycles of denaturation at 93°C for 30 seconds, annealing at 55ºC for 30 seconds, and extension at 72°C for 30 seconds, the reaction then completed by a final extension at 72°C for 5 minutes. After amplification, DNA fragments were analyzed by electrophoresis and identified on a 1.5% agarose gel, stained with ethidium bromide under ultraviolet illumination.

Data analysis
A Chi-square test (χ^2) of significance was used for data comparison using the SPSS package (V22) (IBM, Armonk, NY, USA).

Results
The overall infection rate of *T. gondii* among the examined sheep was 31.3%. Although toxoplasmosis was estimated in slaughtered sheep meat samples as 34%. According to the selected regions, a higher prevalence of toxoplasmosis was reported in Sharazoor (34.8%) and a lower prevalence in Said Sadiq (27.4%).

Tissue-wise prevalence represents a higher prevalence rate in the diaphragm (46%) and a lower one (24%) in the thigh muscle. Regarding the frequency of toxoplasmosis in selected age groups, a higher infection rate of 32.8% was found among animals older than 24 months rather than younger animals, with no statistically significant association (p>0.05), as shown in Table 1.

Discussion
Small ruminants’ meat, especially lamb and mutton, was considered the major meat source consumed in the study area. The current study data revealed the moderate existence of toxoplasmosis among sheep. Consuming raw meat or animal products that contain tachyzoites or bradyzoites continues to be the principal way that *Toxoplasma* is transmitted to humans (Dubey, 2009).

By molecular findings using PCR, the prevalence of toxoplasmosis among sheep was revealed to be 31.3% in Sulaymaniyah province (northern region of Iraq); similarly, toxoplasmosis has been reported from sheep with various prevalence rates: 21.7% (Mikael and Al-Saeed, 2020), a low prevalence of 8.75%, and 9% were reported from other regions of Iraq by Al-Shaibani *et al.* (2019) and Al-Abodi (2021), respectively.

The current study data also highlight the existence of the *Toxoplasma* parasite in meat samples of slaughtered sheep at the Sulaimani abattoir. The molecular findings by PCR revealed infection in 34% of tissue samples collected from the heart, diaphragm, and thigh muscle. In agreement with current data, higher prevalence rates of 52.5% and 34.32% were reported by Kareshk *et al.* (2017) and Armand *et al.* (2016), respectively. Contrary to the present data, a low prevalence of 14.4% and 14.6% was found by Bahreh *et al.* (2021) and Amouei *et al.* (2022) respectively.

Regarding toxoplasmosis prevalence rates in different regions, a higher infection rate was reported from Sharazoor at 34.8%, followed by 32.4% in Sitak and 31.2% from Bazian, with a lower reported rate of 27.4% from Said Sadiq, although no significant association was detected statistically. Such variation might relate to the management systems applied on different farms regarding hygienic conditions and
the availability of cats. The degree of pasture environment contaminated by oocysts, the physiology, and the health status of the animals might affect the frequency of *Toxoplasma* positivity.

Among the tissue samples, a higher prevalence was demonstrated from the diaphragm (44%), followed by the heart (32%), and a lower level (24%) was stated from the femoral muscle. Similar to current findings, in the study by Firouzeh et al. (2021), a higher detected infection rate was found in the diaphragm (47.8%) than in the heart tissues (26.1%) of slaughtered sheep. Other related studies reported various prevalence rates of *Toxoplasma* existence from different tissue samples. In a study performed by Yousefvand et al. (2021), a higher infection rate of 32% was demonstrated in the heart, followed by 22% in muscle tissue and 17.3% in the liver of slaughtered sheep, which is in harmony with the present findings. Furthermore, different from the current data, lower infection rates of 17.8% from the heart (Rasti et al., 2018) and 11.1% from the diaphragm (Bahreh et al., 2021), with a higher infection rate of 28% from the femoral muscle (Azizi et al., 2014), were reported previously. The higher incidence of toxoplasmosis could be due to animals' lifetime exposure to the parasite on a regular basis (Verma et al., 2017).

Various factors can influence the parasitic invasion of different tissues of infected hosts. It was found that parasite distribution in the various tissues of infected hosts may change depending on the length of the infection. At the beginning of infection, parasites load at a higher rate in the brain, liver, and blood. Thereafter, it gradually grows in the heart and skeletal muscles (Azizi et al., 2014; Verma et al., 2017). The strain of the parasite or the infection stage (oocysts or bradyzoites) may have an impact on the variation in the location of parasitic cysts in the various tissues of the host carcass (Swierzy et al., 2014). The study data presented a variation in *Toxoplasma* infection rate according to the age groups of selected animals. 32.8% were reported from the <24 months age group, and 28.9% were reported from ≥24 months animals; however, the difference was not significant. In accordance with the study findings, a higher prevalence of toxoplasmosis in adult sheep than in younger animals (less than 2 years) was found by Abdallah et al. (2019) and Gebremedhin et al. (2014).

Previous data presented a significant relation between toxoplasmosis and the age of infected hosts; the higher incidence rate among adults than young animals could be due to the further exposure of animals to contaminated environments during their lives. Animals mostly acquire *Toxoplasma* infection via ingestion of oocysts from soil and water that they shed by domestic or feral cats (Tonouhewa et al., 2017). Livestock animal exposure to *Toxoplasma* has been linked to several risk factors, including type of farm, food supply, existence of cats, quality of water, and carcass handling techniques (Guo et al., 2015). Moreover, traditional husbandry and pasture feeding significantly increase the risk of toxoplasmosis occurrence (Anvari et al., 2018). Livestock production is widely dispersed in the study regions, and semi-extensive production is the main farming system for small ruminants. Cattle and sheep are more susceptible to contracting feline oocyst infections due to feeding practices and environmental hygiene. In outdoor management systems, livestock animals have frequently become infected due to excessive levels of parasitic oocysts in the environment brought on by infected stray cats that were released on poorly maintained farms (Abd El-Razik et al., 2018).

Due to the ability of an infected cat to shed a large number of oocysts, it is probable that a few cats are sufficient for contaminating a wide field area in a short period of time, since millions of oocysts can be released by a single infected cat (Tilahun et al., 2018). *Toxoplasma*-infected animals' placentas and aborted fetuses should be disposed of properly to prevent the parasite's life cycle from continuing and resulting in the shedding of additional oocysts. This increases the risk that cats will become infected by eating these items (Hamilton et al., 2014).

The possible threat to human health becomes evident in areas where small ruminants have a high infection rate (Gebremedhin et al., 2014). Consumption of undercooked meat from infected sheep plays a significant role in human infection (Kijlstra and Jongert, 2008). It was verified that *Toxoplasma* tissue
cyst is extremely strong, maintains its viability at temperatures of 1-4°C for weeks, and requires a temperature over 67°C or below 12°C for significant loss of viability (Kotula et al., 1991). Typically, undercooked lamb meat is considered a significant source of infection. However, the meat of adult sheep is frequently well-cooked, which likely reduces the risk of infection for customers (Kijlstra and Jongert, 2008). In addition, the recent rise in consumption of barbecued meat (kebab), which is made from the meat of adult animals, represented a significant risk of a higher infection rate (Armand et al., 2016). *Toxoplasma* infection rates in animals can help estimate the frequency of toxoplasmosis in humans (Tonouhewa et al., 2017).

The free-ranging production practices used for small ruminant rearing make it difficult to control the disease, but education and training can readily reduce infection among humans, which is crucial for pregnant women and those with immune system disorders (Gorji et al., 2018).

Conclusions

According to data from the current investigation, toxoplasmosis affects sheep broadly in different regions of the study area, which is considered a cause of economic impairment in the livestock industry. In addition, the existence of *Toxoplasma* has been confirmed from meat and tissue samples of slaughtered sheep from the Sulaimani abattoir at a moderate rate. Due to the involvement of sheep in the transmission of the parasite to humans through the consumption of meat and meat products, it might be likely that infected sheep become a significant source of *T. gondii* infection among individuals who belong to the studied area. The zoonotic risk aspect of *Toxoplasma* infection for human health is clear, especially for pregnant and immunodeficient people. However, frozen meat might reduce the hazard of parasite transmission. Moreover, control of toxoplasmosis in farm animals may result in a decline in the human infection rate.

References

Table 1. Frequency of *Toxoplasma* infection in blood and tissue samples of sheep.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Determinants</th>
<th>Total examined No.</th>
<th>No. of positive</th>
<th>Prevalence %</th>
<th>Chi-square value [p]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td>Blood</td>
<td>300</td>
<td>94</td>
<td>31.3</td>
<td>0.325</td>
</tr>
<tr>
<td></td>
<td>Tissue</td>
<td>150</td>
<td>51</td>
<td>34</td>
<td>[0.5]</td>
</tr>
<tr>
<td>Regions</td>
<td>Bazian</td>
<td>77</td>
<td>24</td>
<td>31.2</td>
<td>0.860</td>
</tr>
<tr>
<td></td>
<td>Said Sadiq</td>
<td>73</td>
<td>20</td>
<td>27.4</td>
<td>[0.8]</td>
</tr>
<tr>
<td></td>
<td>Sharazoor</td>
<td>79</td>
<td>27</td>
<td>34.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sitak</td>
<td>71</td>
<td>23</td>
<td>32.4</td>
<td></td>
</tr>
<tr>
<td>Tissues</td>
<td>Heart</td>
<td>50</td>
<td>16</td>
<td>32</td>
<td>5.525</td>
</tr>
<tr>
<td></td>
<td>Diaphragm</td>
<td>50</td>
<td>23</td>
<td>46</td>
<td>[0.6]</td>
</tr>
<tr>
<td></td>
<td>Muscle</td>
<td>50</td>
<td>12</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>≥24 months</td>
<td>114</td>
<td>33</td>
<td>28.9</td>
<td>0.486</td>
</tr>
<tr>
<td></td>
<td><24 months</td>
<td>186</td>
<td>61</td>
<td>32.8</td>
<td>[0.4]</td>
</tr>
</tbody>
</table>